
Model Tree Learning for Query Term Weighting
in Question Answering

Christof Monz

Department of Computer Science
Queen Mary, University of London

Mile End Road, London E1 4NS, United Kingdom
E-mail: christof@dcs.qmul.ac.uk

URL: www.dcs.qmul.ac.uk/∼christof

Abstract. Question answering systems rely on retrieval components to identify
documents that contain an answer to a user’s question. The formulation of queries
that are used for retrieving those documents has a strong impact on the effective-
ness of the retrieval component. Here, we focus on predicting the importance of
terms from the original question. We use model tree machine learning techniques
in order to assign weights to query terms according to their usefulness for identi-
fying documents that contain an answer. Incorporating the learned weights into a
state-of-the-art retrieval system results in statistically significant improvements.

1 Introduction

Current question answering systems rely on document retrieval as a means of identi-
fying documents which are likely to contain an answer to a user’s question. The doc-
uments returned by the retrieval engine are then further analyzed by computationally
more expensive techniques to identify an answer to a given question.

The effectiveness of the retrieval component is critical for the performance of a
question answering system: If the retrieval system fails to find any relevant documents
for a question, further processing steps to find an answer will inevitably fail as well.

In particular, the way queries are formulated has a strong impact on retrieval effec-
tiveness. Boolean retrieval is especially sensitive to query formulation. Using all content
words from the question for the query can steer the retrieval process in a wrong direc-
tion. For example, consider the question What is the abbreviation for the London stock
exchange?. It seems natural to include the word abbreviation in a boolean query like:

(1) abbreviation AND london AND stock AND exchange

However, most documents that contain an answer to this question express it in the form
of ‘. . . London Stock Exchange (LSE). . . ,’ not using the term abbreviation or one of its
morphological variants at all. Hence, in boolean retrieval, a query such as (1) might be
too strict and retrieve no documents at all.

Vector-space retrieval is less strict with respect to presence or absence of query
terms in documents, but a similar problem arises. Even vector-space retrieval approaches
will prefer documents containing the term abbreviation over those that do not contain



2 C. Monz

it, although, as discussed above, most documents providing an answer to the question
above do not contain it. The reason is that the term abbreviation receives a high term
weight, because it is much less frequent in the collection than the other terms and is
therefore considered a well-discriminating term for this query.

Our approach tries to predict the importance of a term for a given question by ap-
plying machine learning techniques. The learned importance weights are then used to
improve the retrieval engine. Learning query term weights is appealing in the context
of question answering because a user’s information need is expressed as a well-formed
sentence as opposed to sets of keywords, used in regular information retrieval.

2 Related Work

Previous work on query formulation for question answering has mainly been done for
Web question answering. Brill et al. [2] focus on formulating query strings that approx-
imate the way an answer is likely to be expressed. This involves automatically mapping
the syntax of an interrogative to the syntax of a declarative sentence. Documents are
required to either match one of the strings or the boolean query. However, they do not
address the issue of term weighting.

Paşca [11] does address the issue of term selection and term relevance. His work
is closely related to the work presented in this paper. For query formulation, he dis-
tinguishes between three types of terms: high-relevance, medium-relevance, and low-
relevance query terms. Deciding which class a given term belongs to is based on a
number of rules, some of which are also integrated in our approach.

Although machine learning techniques have been used before to find answer extrac-
tion patterns, see, e.g., [8, 14], they have not been applied before to query formulation
in the context of question answering. On the other hand, machine learning has been
applied to query formulation in the context of ad hoc retrieval. Cooper et al. [4] use
logistic regression to assign weights to matching clues, such as the number of times a
query term occurs in the query, the number of times a query term occurs in a document,
the idf score of a matching term, and the number of distinct terms common to both query
and document. [3] did apply machine learning techniques for selecting query terms, but
it was done in the context of relevance feedback retrieval.

The work by Mayfield and McNamee [9] and Agichtein et al. [1] is to some extent
complementary to our work as it expands retrieval queries with terms or phrases that are
likely to be found in the context of phrases which are of the expected answer type. While
the approach in [9] is based on simple co-occurrence statistics, [1] also incorporate the
BM25 retrieval weighting scheme to assign weights to the expansion phrases.

3 Optimal Query Term Selection

In this section we estimate the effect query formulation, in the form of term selection,
can have on retrieval performance, by using the TREC-9, TREC-10, and TREC-11 data
sets consisting of 500 different questions each and the AQUAINT document collection.

For evaluating the retrieval effectiveness, we used NIST’s judgment files. Each file
indicates for each submitted answer-document-id pair, whether the answer is correct.



Model Tree Learning for Query Term Weighting in Question Answering 3

Questions with no correct answer were disregarded. The documents that are known to
contain a correct answer form the gold standard for our evaluation, which contains 480,
433, and 455 questions for TREC-9, TREC-10, and TREC-11, respectively.1

In order to compute the optimal term selection for each question, we compare all
possible ways of selecting terms from a question. That is, given a question q in which
the set of terms T occurs, we consider all possible subsets of T , and evaluate the re-
spective performances. More formally, the set of term selection variants (tsv) is defined
as tsv(q) = POW(T )− {∅}. For each question in the three data sets, we determined the
query variant with the highest average precision. Table 1 shows the performance gains
that can be achieved by using an oracle to pick the optimal query variant.

TREC-9 TREC-10 TREC-11
a@n Lnu.ltc opt Lnu.ltc opt Lnu.ltc opt

a@5 0.700 0.823 (+17.6%)N 0.649 0.749 (+15.4%)N 0.523 0.690 (+31.9%)N

a@10 0.785 0.890 (+13.4%)N 0.734 0.815 (+11.0%)N 0.626 0.767 (+22.5%)N

a@20 0.845 0.921 (+9.0%)N 0.801 0.887 (+10.7%)N 0.705 0.824 (+16.9%)N

a@50 0.914 0.956 (+4.6%)N 0.875 0.924 (+5.6%)N 0.795 0.881 (+10.8%)N

Table 1. Comparison of the a@n scores of optimal retrieval queries to baseline runs.

In the context of question answering, it is common to measure the effectiveness of
a retrieval system in terms of answer-at-n (a@n) which is the percentage of questions
for which the system returned at least one document containing an answer in the top-n
ranked documents. For our baseline we did not use blind relevance feedback, as Monz
[10] has shown that simple Lnu.ltc weighting with stemming outperforms approaches
using blind feedback for question answering.

As one could expect, query formulation has a significant impact on the overall per-
formance of a retrieval system, even if query formulation is just based on term selection
without expanding the queries with semantically related terms. This comparison shows
that much can be gained from better query formulation, but, of course the problem of
identifying an optimal query without having any relevance assessments remains open.
In the remainder we explore ways to solve this issue.

Two retrieval methods a and b are compared by one-tailed statistical significance
testing, using the bootstrap method [5]. Improvements at a confidence level of 95% are
marked with “4” and at a confidence level of 99% with “N”.

4 Computing Query Term Weights

Our approach is to use the different query variants of a question to distinguish between
terms that help retrieve relevant documents, and terms that harm the retrieval effective-
ness for that particular question.

1 The original TREC-9 data set contains 243 questions that are re-formulations of the questions
in the main TREC-9 set. For our experiments, these variants were disregarded.



4 C. Monz

In the previous section, we considered only one single best-performing query vari-
ant, but often there are several almost equally well-performing query variants. Looking
at the ranked query variants, reveals that some terms occur more frequently in higher-
ranked variants than other terms.

An analysis of the distribution of query terms over the ranked query variants allows
one to assign a weight to each query term: If a term occurs mainly in query variants
that have a high average precision it should receive a high weight, whereas a term
that occurs mainly in query variants that have a low average precision should receive
a low weight. Thus, the weight of a query term depends on two factors: The average
precisions of the query variants in which the term occurs (its presence weight: w+(t)),
and the average precisions of the query variants in which the term does not occur (its
absence weight: w−(t)). Presence and absence weights are normalized by the sum of the
average precisions of all query variants, so the weights will range between 0 and 1.

Given a question q and all its query variants tsv(q), the presence weight of term t
(w+(t)) is computed as:

w+(t) =

∑
q′∈tsv(q)∧t∈q′

avg prec(q′)∑
q′∈tsv(q)

avg prec(q′)
(2)

The absence weight of term t (w−(t)) is computed as:

w−(t) =

∑
q′∈tsv(q)∧t<q′

avg prec(q′)∑
q′∈tsv(q)

avg prec(q′)
(3)

The presence and absence weights of a term t, can be combined into a single weight
by subtracting the absence weight from the presence weight, which we call the gain of
term t: gain(t) = w+(t)−w−(t). If a query term has a positive gain it should be included
in the query, but excluded if its gain is negative.

This approach of computing term weights assumes that terms occur independently
of each other. This assumption does not hold in practice, but it is commonly used in
information retrieval and allows us to simplify the computation of term weights.

5 Representing Terms by Feature Sets

In the previous section, the computation of the term weights was based on the distribu-
tion of the terms themselves over the query variants. This is problematic for two reasons.
First, the same term can have a high gain in one query, and a low gain in another. Sec-
ond, if the learning algorithm is based on the surface terms themselves, it cannot assign
weights to terms that did not occur in the training data. The first problem is a direct
consequence of the term independence assumption. It could be solved by conditioning
the weight of a term on a number of terms that also occur in the question, but then data
sparseness becomes even more of an issue.

One way to address both problems is to represent terms and their contexts in a more
abstract manner. Here, we use a set of features that represent certain characteristics of a



Model Tree Learning for Query Term Weighting in Question Answering 5

term and its role in a question. The list of features contains information about the term’s
part-of-speech, whether it semantically includes other terms in the question, the type
of question it occurs in, etc. As mentioned above, some of the features capture aspects
inherent to a term, such as part-of-speech, while others capture contextual aspects, such
as semantic inclusion. Table 2 lists all features. The features question focus, superlative,
quoted, number of leaves, modified noun, and person name are based on [11].

Feature Value Feature Value
part-of-speech Penn Treebank part-of-speech

tag
location Whether the word is part of a lo-

cation name
question focus Whether the word is part of the

question focus
abbreviation Whether the word is an abbrevi-

ation
superlative Whether the question contains a

superlative adjective
upper case Whether the word starts with an

uppercase letter
question class A fixed list of question classes classif. word Whether the word was used to

classify the question
multpl. occurr. Whether the word occurs more

than one in the question
person name What part of a person’s name is

the word, if applicable
quoted Whether the word occurs be-

tween quotation marks
honorific Whether the word is a honorific

term (e.g., Dr.)
modified noun Whether the word is a noun that

is preceded (modified) by an-
other noun

no. edges The number of edges pointing to
a word in the dependency parse
graph of the question

term ratio 1/m, where m is the number of
unique terms in the question

hypernym Whether the word is a hypernym
of another question word

no. leaves The number of hyponyms in
WordNet that do not have any
further hyponyms

relative idf The relative idf compared to the
other words in the question

Table 2. List of features for question words.

Most of the features in Table 2 are fairly general and self-explanatory, but some are
more specific and do require some further explanation.

The focus of a question is a phrase describing a semantic type of which the answer
is an instance. For example, in the question In what country did croquet originate?, the
focus is country. The answer to this question, which is France, is an instance of country.
Whether a word is part of the question focus affects query formulation, because many
documents containing an answer to the question do not explicate the instance relation.

Classifying words help determine the type of a question. E.g., in the question What
province is Calgary located in?, the word located indicates that the question is a loca-
tion question. However, words that are good indicators for question classification, are
infrequent in answers as expressed in documents. For instance, it is rather unlikely that
the word located is used in a declarative sentence answering this question.

The number of incoming edges refers to the dependency parse graph of the question
which is generated by M [7]. If a word has a larger number of incoming edges,



6 C. Monz

several words in the question are in a modifier or argument relationship with this word,
and therefore it is more likely to play a central role in the question. For each word in any
question, the features listed in Table 2 are extracted automatically, by using off-the-shelf
tools, including a POS tagger, dependency parser, and named-entity recognizer.

6 Learning Term Weights

Instead of using some heuristics for predicting the query term importance we apply
machine learning techniques to assign a weight to each term in the question, where
the actual query that is used for retrieval will include these weights. The input for the
learning algorithm is the set of feature vectors as described in the previous section, and
the classes are the terms’ gains as described in Section 4.

For the purpose of learning term weights, the machine learning algorithm should
learn to predict the degree of the query term’s usefulness for query formulation. Deci-
sion trees, naive Bayes, and linear regression, all allow for interval classification and
generate transparent classification rules.

Naive Bayes classification is known to be well-performing for nominal classifica-
tion, but performs badly for interval classification [6].

The best-known algorithm for decision tree learning is Quinlan’s C4.5 [13], but C4.5
cannot deal with cases where the class to be learned is not a label, but a real number.
M5 [12], on the other hand, which is an extension of C4.5, does allow for this type of
continuous classification, also referred to as regression.

The M5 algorithm builds model trees combining conventional decision tree learning
with the possibility of linear regression models at the leaves of the tree. The resulting
representation is transparent because the decision structure is clear and the regression
models are normally easily interpretable. The idea of model trees is largely based on the
concept of regression trees. The advantage of M5 is that model trees are generally much
smaller than regression trees and have proved to be more accurate in a number of tasks;
see [12]. M5 is suited for learning query term weights because it combines decision
tree learning with linear regression, which allows it to consider dependencies between
features. The learning algorithm used here, is M5′ [15], which is a reconstruction of
Quinlan’s M5 algorithm. M5′ is part of the WML package [16].

7 Results

For our experiments, the weight of a query term depends on two factors: The frequency
of a term in a document, and the collection frequency, i.e., the number of documents
containing that term. If we want to integrate the learned term weights, as described
above, the computation of the retrieval status value (RSV) has to be adapted appropri-
ately. We use the learned query term weights in combination with the original retrieval
status value that resulted from computing the similarity between a query q and a doc-
ument d according to the Lnu.ltc weighting scheme, which results in the new retrieval
status value: RSVL, which is defined as follows:

RSVL(q,d) =
∑

t∈q∩d

RSV(q,d) ·weight(fr(t,q)) · idf(t)



Model Tree Learning for Query Term Weighting in Question Answering 7

Here, fr(t,q) is the feature representation of term t in query q, and weight(fr(t,q)) is the
learned weight, which results from applying the M5′ model tree to t’s feature vector.
RSV(q,d) is the document similarity according to the Lnu.ltc weighting scheme, and
idf(t) is the idf value of term t, i.e., log2(N/df t), where N is the collection size and df t
is the number of documents containing t.

For the evaluation three different model trees were generated, one for each of the
TREC data sets. The model tree for assigning weights to terms in the TREC-9 data set
was trained on feature representations of words from TREC-10 and TREC-11 (2854
instances), the model tree for the TREC-10 data set used feature representations from
TREC-9 and TREC-11 (3167 instances), and the model tree for the TREC-11 data set
used feature representations from TREC-9 and TREC-10 (2769 instances).

First, we considered the performance with respect to the answer-at-n (a@n) mea-
sure. Table 3 shows the results of using learned query terms weights in contrast to the
Lnu.ltc baseline. The improvements are rather modest, although still statistically signif-
icant in some cases.

TREC-9 TREC-10 TREC-11
a@n Lnu.ltc LWR Lnu.ltc LWR Lnu.ltc LWR

a@5 0.700 0.727 (+3.7%)4 0.649 0.654 (+0.1%) 0.523 0.547 (+4.6%)4

a@10 0.785 0.806 (+2.7%)4 0.734 0.730 (-0.1%) 0.626 0.637 (+1.8%)
a@20 0.845 0.863 (+2.1%) 0.801 0.804 (±0.0%) 0.705 0.732 (+3.8%)4

a@50 0.914 0.908 (-0.1%) 0.875 0.859 (-1.8%) 0.795 0.815 (+2.5%)

Table 3. Comparison of the a@n scores of learned-weights retrieval (LWR) to the baseline.

8 Conclusions

In this paper we investigated to what extent it is possible to learn query term weights for
better query formulation. As we have seen in Section 3, keyword selection has a strong
impact on the performance of the retrieval component. In order to learn query term
weights, we considered all possible ways of selecting terms from the original question
for query formulation, and used the performance results of each possible formulation in
order to determine individual query term weights.

Query terms are represented as sets of features on which the M5′ model tree learn-
ing algorithm is trained. The resulting model trees confirm some of the heuristics and
intuitions for keyword selection than can be found in the literature; see, e.g., [11]. The
improvements are modest for a@n, yet statistically significant in some cases, and stayed
behind the potential improvements optimal query selection can yield. On the other hand,
our term weight learning approach yields significantly better results than the baseline
for mean average precision. Hence question answering systems that are more sensitive
to the rank and number of a retrieved document can benefit from using our approach.

In some cases the issue of whether a term is helpful for retrieving answer documents
simply depends on idiosyncrasies of the documents that contain an answer, but we do



8 C. Monz

not believe that this had a noticable impact on our results as we used large and varied
training data to generalize properly.

References

1. Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning to find answers to questions
on the web. ACM Transactions on Internet Technology, 4(2):129–162, 2004.

2. Eric Brill, Susan Dumais, and Michelle Banko. An analysis of the AskMSR question-
answering system. In Proceedings of Emperical Methods in Natural Language Processing
(EMNLP 2002), pages 257–264, 2002.

3. Hsinchun Chen, Ganesan Shankaranarayanan, Linlin She, and Anand Iyer. A machine learn-
ing approach to inductive query by examples: An experiment using relevance feedback, ID3,
genetic algorithms, and simulated annealing. Journal of the American Society for Informa-
tion Science, 49(8):693–705, 1998.

4. William Cooper, Aitao Chen, and Frederic Gey. Full text retrieval based on probalistic equa-
tions with coefficients fitted by logistic regression. In Proc. of the 2nd Text REtrieval Con-
ference, pages 57–66, 1993.

5. Brad Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1):1–
26, 1979.

6. Eibe Frank, Leonard Trigg, Geoffrey Holmes, and Ian H. Witten. Naive bayes for regression.
Machine Learning, 41(1):5–25, 2000.

7. Dekang Lin. Dependency-based evaluation of minipar. In Proceedings of the Workshop on
the Evaluation of Parsing Systems, 1998.

8. Lucian Vlad Lita and Jaime Carbonell. Unsupervised question answering data aquisition
from local corpora. In Proceedings of the Thirteenth Conference on Information and Knowl-
edge Management (CIKM 2004), pages 607–614, 2004.

9. James Mayfield and Paul McNamee. JHU/APL at TREC 2005: QA retrieval and robust
tracks. In Ellen M. Voorhees and Lori P. Buckland, editors, Proceedings of the Fourteenth
Text REtrieval Conference (TREC 2005), 2005. NIST Special Publication: SP 500-266.

10. Christof Monz. Document retrieval in the context of question answering. In Fabrizio Se-
bastiani, editor, Proceedings of the 25th European Conference on Information Retrieval Re-
search (ECIR-03), LNCS 2633, pages 571–579. Springer, 2003.

11. Marius Paşca. High-Performance Open-Domain Question Answering from Large Text Col-
lections. PhD thesis, Southern Methodist University, 2001.

12. John R. Quinlan. Learning with continuous classes. In Proceedings of the 5th Australian
Joint Conference on Artificial Intelligence, pages 343–348, 1992.

13. John R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
14. Deepak Ravichandran and Eduard Hovy. Learning surface text patterns for a question an-

swering system. In Proceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 41–47, 2002.

15. Yong Wang and Ian H. Witten. Induction of model trees for predicting continuous classes. In
Proceedings of the Poster Papers of the European Conference on Machine Learning (ECML),
pages 128–137, 1997.

16. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, 1999.


