Appeared in: Dix, J., del Cerro, F. L., and Furbach, U., editors,
Logicsin Artificial Intelligence (JELIA 98),

Lecture Notes in Artificial Intelligence 1489,

Springer, pages 184-198, 1998.

A Resolution Calculusfor Dynamic Semantics

Christof Monz and Maarten de Rijke

ILLC, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The
Netherlands. E-mail: {christof, mdr} @wins.uva.nl

Abstract. This paper applies resolution theorem proving to natural language se-
mantics. The aimisto circumvent the computational complexity triggered by nat-
ural language ambiguities like pronoun binding, by interleaving pronoun binding
with resolution deduction. To this end, disambiguation is only applied to expres-
sions that actually occur during derivations. Given a set of premises and a con-
clusion, our resolution method only delivers pronoun bindings that are needed to
derive the conclusion.

1 Introduction

Natural language processing (NLP), has along tradition in Artificial Intelligence, but it
till remains to be one of the hardest problems in the area. Research areas such as se-
mantic representation and theorem proving with natural language have to deal with a
problem that is characteristic of natural languages, namely ambiguity. There are several
kinds of ambiguity, see for instance [RN95] for an overview. In the present paper, we
focus on pronoun binding,* a certain instance of ambiguity, as exemplified by (1) be-
low.

(1) A man seesaboy. He whistles.

Often, there are lots of possibilities to bind a pronoun and it is not clear which one to
choose. The pronoun he in the short discourse in (1) can be bound in two ways as given
in (2), where co-indexation indicates referential identity.

(2) a A man; seesaboy. He whistles.
b. A man seesaboy;. Hg whistles.

For some cases heuristics are applicable which prefer certain bindings to others, but at
present there is no approach making use of heuristics which is general enough to cover
all problems.

Dynamic semantics [Kam81,GS91] allows to give a perspicuous solution to some
problems involving pronoun binding. Since we are interested in binding occurrences of
pronouns to expressions mentioned earlier in a discourse, we take a slight modification
of Dynamic Predicate Logic (DPL) [GS91], where it is not presupposed that pronouns

1 Throughout this paper we use the term binding to express the referential identification of apro-
noun and another referential expression occurring in the discourse. Common terms are also co-
indexation or pronoun resolution. We especially did not use pronoun resolution to avoid con-
fusion with resolution as a deduction principle.

are aready co-indexed. Actually, pronoun binding fals into the realm of constructing
semantic representations of natural language discourses, and one of the main purposes
of constructing these representations is to reason with them. Now, the question arises
which form the input of the theorem prover should have. Should atheorem prover work
only ontotally disambiguated expressions? Total disambiguation resultsin an explosion
of readings, because of the multiplicative behavior of ambiguity. On the other hand, to
proveaconclusion ¢ from aset of premisesl” it may be enough to use only premisesfrom
asmall subset A of I, and it may be sufficient, and much more efficient, to disambiguate
only A instead of the whole set of premises . In general, we do not know in advance
which subset of premises might be enough to derive a certain conclusion, but during
a derivation often certain (safe) strategies may be applied that prevent some premises
from being used since they cannot lead to the conclusion, anyway. Common strategies
to constrain the search space in resolution deduction are e.g., the set-of-support strategy
and ordered resolution. Our goal isto constrain the set of premises that have to be dis-
ambiguated by interleaving deduction and disambiguation. Roughly speaking, premises
are only disambiguated if they are used by adeduction rule.

Therest of the paper is structured as follows. Section 2 provides some rudimentary
background in dynamic semantics and explains what kind of structural information is
necessary to restrict pronoun binding. In addition, the basics of resolution deduction
are introduced. Section 3 discusses some of the problems of the (standard) resolution
method when applied to natural language. The method of labeled unification and res-
olution is presented to overcome these problems. Section 4 briefly relates our work to
some other approaches to pronoun binding. Section 5 provides some conclusions and
prospects for further work.

2 Background

Before we turn to our method of labeled resolution deduction and its applicationsto dis-
course semantics, we briefly present theidea of dynamic semantics. The second subsec-
tion shortly explains the classic resolution method for (static) first-order logic.

2.1 Dynamic Reasoning

Dynamic reasoning differs from classical reasoning to the extent that sequences of for-
mulas are considered instead of sets of formulas. To model discourse relations like pro-
noun binding it isimportant to take the order of sentencesinto account because two se-
guences which have the same members, but differ in order, may have a different mean-
ing. (Compare ‘A man walksin the park. He whistles.” and ‘He whistles. A man walks
inthe park.”)

DPL is a semantic framework which works on sequences of formulas and it allows
to represent pronoun binding, where the antecedent of the pronoun and the pronoun it-
self may occur in different formulas. This is accomplished by assigning the existential
quantifier flexible binding. In (3.b) a DPL representation of the short discoursein (3.a)
isgiven.

(3) a A man; seesaboy. He whistles.

b. 3Ix(man(x) A 3y (boy(y) A see(x,y))) A whistle(x)

The pronoun he is represented by the variable x which is the same as the one bound by
the existential quantifier, but it occurs outside of its scope. To bind x in whistle(x) it is
necessary to give the existential quantifier flexible scope.

One of the advantages of dynamic approaches like DPL isthat they allow for afor-
mal definition of possible antecedents for a pronoun. Without giving too many details,
we just note that negations function as barriers for flexible binding. Therefore, an exis-
tential quantifier occurring in the scope of anegation cannot bind a pronoun that occurs
outside of the negation, as shown by (4).

(4) *John doesn’'t own acar;. It isin front of his house.

The three properties (a) existential quantifiers can bind variables occurring to the
right-hand side of their traditional scope, (b) conjunctions preserve the flexible scope,
and (c) negations are barriers for dynamic binding, allow us to define the properties of
the other logical connectivesv, — and V. [[-] isafunction that assigns to each formula
its semantic value.

(5) [0 VY] = [-(=dA-W)]
[¢ = W] =[-(¢6A-)]
[Vx¢] = [-3x—¢]

Given these definitions, we see that disunction is a barrier both internally and exter-
nally, implication is abarrier externally but internally it allows for flexible binding, and
universal quantification does not alow for external binding.

We differ in two respectsfrom DPL. First, we do not allow two or more occurrences
of Ix within a single text. The problem is that the second occurrence of 3x resets the
value of x, and thereby previous restrictions on x are lost. We assume for simplicity that
all bound variables are digjoint. Thisisnot a severerestriction and an algorithm for con-
structing semantic representations for natural language sentences can easily accomplish
this. The second difference with DPL is that we do not assume co-indexation of quanti-
fiersand the pronounswhich they bind. In (3) thevariablefor heisaready assumedto be
x and in DPL the question of pronoun binding is pushed to somekind of preprocessing.
But finding theright binding isfar from being an easy task and it isvery complex from a
computational point of view. The pronounin (3) could also be represented by vy, indicat-
ing that that he refersto a boy. E.g., adiscourse containing twenty indefinites followed
by a sentence with two pronouns, has 20 - 20 = 400 possible bindings, disregarding any
linguistic constraints which rule out some of the bindings.

To this end, we postpone pronoun binding and represent pronouns in the semantic
representation by freevariables. Variablesfor pronounsaredisplayedin boldfaceand are
of adifferent kind than regular variables. Pronoun variables are bound by the ?-operator.
It differs from 3 and V, because it only binds its argument, but does not quantify over
it. Actually, it is not necessary to have a special operator for pronouns, and we only in-
troduced it here for the sake of convenience to identify the position where the pronoun
is introduced. Our representation of (1), repeated as (6.a) below, is given in (6.b). As
mentioned before, co-indexation of pronouns and antecedents is not carried out.

(6) a A man seesaboy. He whistles.
b. 3Ix(man(x) A Jy(boy(y) A see(x,y))) A 2uwhistle(u)

Thetask whether u hasto be substituted by x or by y is postponed to the deduction com-
ponent, as motivated in Section 1.

Unliketheexistential quantifier, the ?-operator does not have the property of flexible
binding. We get the following equivalence:

[~u¢] = [u-¢]

To define accessibility we can now say that avariable x is accessiblefrom apronoun
u if no barrier occurs between the quantifier introducing x and ?2u. A formal definition
of accessibility is given in the next section. The eguations in (5) show that v, — and
V introduce barriers because of the way they are defined in terms of negation. Thisis
exemplified by (7) below.

(7) *Every farmer owns adonkey;. Itj isgrey.

Dispensing with the presupposition that pronouns and antecedents are already co-
indexed re-introduces the concept of ambiguity to our framework. This makesit neces-
sary to give adefinition of the semantics of ambiguous formulas. It iscommon to define
their semanticsin terms of their possible disambiguations, see [Rey93], and herewefol-
low the same approach. A total disambiguation isamapping from ambiguous dynamic
formulasto classical first-order formulas. Disambiguation encompassestwo steps. First,
we have to find a proper antecedent for a pronoun. To define proper antecedents, we
use the notion of accessibility. Second, we have to map unambiguous dynamic formulas
to classical formulas. This means that we have to turn flexible quantification into static
quantification, and thisinvolves re-bracketing and quantifier movement. [GS91] give an
algorithm that computes for each DPL-formula$ aformula’ whichisin normal bind-
ing form, i.e,, al pronouns are quantified over in the classical sense, and which isvalid
in first-order logic iff ¢ isvalidin DPL. For instance, the normal binding form of (8.b)
is(9).

(8) a If afarmer; ownsadonkey;, then he beatsit;.

b. Ix(f(x) Ady(d(y) Ao(x,y))) = b(x,y)
(9) VxVy(f(x) Ad(y) Ao(x,y) = b(x,y))

To define the validity of ambiguous formulas, we say that an ambiguous formula ¢
isvalid, i.e., for all models M it holdsthat M =5 ¢, if thereis a disambiguation 8, such
that M |= 8(¢), for all models M. In words: ¢ isvalid iff there exists a disambiguation
which isvalid in first-order logic.

Unfortunately we do not have enough space to give a more detailed account of dy-
namic semantics, but we refer the reader to [Kam81,GS91].

2.2 TheResolution Method

The resolution method [Rob65] has become quite popular in automated theorem prov-
ing, because it is very efficient and it is easily augmentable by lots of strategies which

restrict the search space, seee.g., [Lov78]. On the other hand, the resolution method has
the disadvantage of presupposing that itsinput hasto bein clause form, whichis aset of
clauses, interpreted asaconjunction. A clauseisaset of literals, interpreted as adisjunc-
tion. Probably the most attractive feature of resolution is that it has only one inference
rule, the resolution rule;

CU{=Py,...,mPy} DU{Qq,...,Qm}
(Cubmo

(res)

where e Qq,...,Qnareatomic
e TTis asubstitution such that CU {—Py,...,—Py} and
DU {QqTY,...,QmTt} are variable disjoint
e 0 isthe most general unifier of {Py,...,Pn, Q1T ..., QmTT}

To provethat I' |= ¢ holds we transform (A ') A —¢ in clause form and try to derive a
contradiction (the empty clause) from it by using the resolution rule.
For acomprehensive introduction to resolution see for instance [Lov78].

3 Dynamic Resolution

Applying the classical resolution method to a dynamic semantics causes problems. Be-
low we will first discuss some of them and then see how we have to design our dynamic
resolution method to overcome these problems.

3.1 Adapting the Resolution Method

There are two problems that we have to find a solution for. First, transforming formulas
to clause form causes aloss of structural information. Therefore, it is sometimesimpos-
sible to distinguish between variables that can serve as antecedents for a pronoun and
variables than can not. The second problem concerns the duplication of literals which
may occur during clausefrom transformation and the assumption of the resol ution method
that clauses are variable disjoint. Although the same pronoun may have two occurrences
in different clauses, we do not want them to be bound by different antecedents.

Turning to thefirst problem, in (10) the pronoun u cannot be bound by the existential
quantifier, whereas the pronoun z can be bound by it.

(10)a. Every farmer who owns a donkey beatsit. It suffers.
b. Wx(f(x) AJy(d(y) Ao(x,y)) =7zb(x,z)))A?us(u)
(11) { {_'f (X), _'d(y)a _'O(Xa y)7 b(X, Z)}7 {S(U)} }

How canwetell whichidentificationsare allowed by looking at the corresponding clause
formin (11)? How do we know whether aterm is accessible?

We uselabelsto carry theinformation about accessiblevariables. Each pronoun vari-
ableisannotated with alabel that indicates the set of accessible variables. Besidesthe set
of first-order or proper variables (VAR), first-order formulas (FORM), and pronoun vari-
ables (PVAR), we are going to introduce the sets of labeled pronoun variables (LPVAR)

and labeled formulas (LFORM). Labeled pronoun variables are of theformV : u, where
V C VAR and u is a pronoun variable. LFORM is the set of first-order formulas plus
formulas containing labeled pronoun variables. To be able to recognize the antecedents
later on, each variable is annotated with its name, (x*,yY, ...), and during skolemization
only the variable is changed, but the label remains unchanged.

To see which variablesinside of aformula ¢ can serve as antecedents for pronouns,
[GS91] introduce the function AQV which returns the set of actively quantifying vari-
ableswhen applied to ¢.

Definition 1. Let FORM be the set of classical first-order formulas and VAR the set of
first-order variables. The function AQV : FORM — POW(VAR) is defined recursively:

AQV(R(X1...%n))
AQV(—9)
AQV(dAY)
AQV(d —)
AQV(dVY)
)

)

QV($) UAQV(Y)

>SS0S >SS

AQV (Yxd
AQV(Ix¢ QV(¢) U{x}
AQV(u¢d) QV(d)

Using the above definition we define the notion of accessible variables.

Definition 2 (Annotation with Accessible Variables). To annotate u in 2u), we drop
the binding operator 2u and substitute all occurrences of the pronoun variable in § by
its annotated counterpart. The annotation function annot : VAR x FORM — LFORM is
defined recursively, whereV C VAR:

annot(V,R(Xy . ..Xn)) R(X1 - .-%n)

annot(V,—¢) = —annot(V,)
annot(V, d)/\lJJ) = annot(V,0) Aannot(VUAQV(9),)
annot(V,¢ —) = annot(V,$) — annot(VUAQV (),)
annot(V,o V) = annot(V,0)Vannot(V,)
annot(V,¥xd) = Vxannot(VU{x},)
annot(V,Ix¢) = Ixannot(VU{x},9)

annot(V,2ud) annot(V,$[u/V:u])

The actual annotation takes place in the last case, where the pronoun is substituted. The
other cases thread the actively quantifying variables through the formula. To annotate
awhole discourse 1 A --- A §p, the variable parameter of annot is initialized with 0,
annot(0,p1 A--- Adp). A term t* is accessible from a pronoun u iff x is element of the
set of the accessible variables of u.

Reconsider the last example, every farmer who owns a donkey beats it. It suffers.
Applying annotation yields:?

annot(0,Vx(f(X) A Jy(d(y) Ao(x,y)) =?zb(x,2))A?us(u))
=Vx(f(x) ATy (d(y) Ao(x,y)) = b(x,{x,y}:2))) A s(0:u)

2 For simplicity, we neglect the fact that pronouns and their antecedents have to agree in gender,
number, etc.

Applying clause form transformation to the annotated formulas yields:

(12) { {“f(X), _'d(y)7 _'O(Xay)7 b(X, {X7y} : Z)}, {S(@ U)} }

We can also seethat (10.a) is not well-formed because there are no accessible pronouns
for the second pronoun it i.e., the label of u isthe empty set.

Now we turn to the second problem: how do we make sure that the same pronoun,
occurring in different clauses, isbound to the same antecedent? Aswe said earlier, we do
not want to assume pronouns to be bound in aset of premises when we apply resolution.
The reason is that pronoun binding is highly ambiguous and often it is not necessary to
bind all pronouns in a set of premises to derive a certain conclusion from it. Another
issue, which we briefly hinted at in Section 2, isthat pronouns should be treated as free
variables of aspecia kind, not to be dealt with in the same manner as universally quanti-
fied variables (which also happen to be represented by free variables). Thisisillustrated
by the following example, which shows an invalid entailment.

(132 3x3yY((AX) VAY)) A (2ZA@2) - (BAC))) faBVC
b, {{A(P),A@)}, {-A®),B}, {-A®),C}, {-B}, {-C} }

Thetransformationin (13) causesaduplication of theliteral =A(z), and we haveto make
sure that the pronoun is instantiated the same way in both cases.

(14) {A(f),A(@")} {-A(2),B} {-A(2),C} {-B} {-C}
v
{A9),B}
{B,C}
{C}
O
In (14) zisinstantiated with f* in thefirst resolution step and then with g¥ in the second.
The resolution rule as it was stated in the preceding section assumes that clauses to be
resolved are variable digjoint. We have to modify the resolution rule such that the same
pronoun variableis allowed to occur in both clauses. Additionally, the instantiation of a

pronoun variable for constructing the most general unifier in aresolution stepis applied
globally, i.e., to al clauses.

(15) {A(t),A(@")} {-A(2),B} {-A(2),C} {-B} {-C}
W
{A(¢),B} {A(f"),C

{A@)} {A(F)}

Global instantiation correctly prevents us from deriving a contradiction in (15).

3.2 Labeled Resolution

Unification isafundamental techniquein the resolution method. Since we are also deal -
ing with labeled variables, we have to think how the unification mechanism has to be
adapted. In the course of this subsection, it will turn out that pronoun binding can be
reduced to unification.

L abeled Unification. We usethe unification algorithm of Martelli and Montanari [MM82]
asabasisand adapt it in such away that it can deal with labeled pronoun variables.
What does it mean to unify aset of equationsE = {s; = t3,...,5 = tn}, wheres or
tj can also be alabeled pronoun variable? We have to distinguish three possible cases:
(i) neither 5 nor tj is alabeled pronoun variable, then labeled unification and normal
unification are the samething, (ii) one of them is apronoun and the other isnot, and (iii)
both are pronouns. Case (ii) isthe normal pronoun binding, where onetriesto identify a
pronoun with a proper variable. Case (iii) is not an instance of pronoun binding, but an
identification of two pronouns, i.e., whatever isthe antecedent of the first pronoun, it is
also the antecedent of the other one.

Definition 3 (Labeled Unifier). We call asubstitution o alabeled unifier or unifier* of
aset of equationsE = {s; ~ ty,...,Sn = th} iff

1. 51,0 =10,....,50 =t,0
2. if (Viu)o=t*thenxeV
3. if (V:u)o=V'":vthenV' CV

We use = to express equality in our object language, whereas = denotes equality in the
meta language.

Condition 1 isthe normal condition of unifiability, namely that the terms of an equa-
tion have to beidentical after substitution. The second condition says that unifiers have
to obey accessibility, for instance o := [{x,y}:u/g7 isnot aunifier of {{x,y}:u= ¢*},
because g# is not accessible from u, as z ¢ {x,y}. To ensure that identification of pro-
nouns always restricts the set of accessible antecedents, we need condition 3.

Definition 4 (Most General Labeled Unifier). A labeled unifier o of aset of equations
E={s1=t1,...,5 ~ th} isthe most general labeled unifier or mgu* of E if

1. if Bisaunifier* of E then thereis substitution t such that 6 = ot
2. if (Viwyo=Vy:v, (V:u)0=V,:v,V;,V, CV,and Vy,V, £ 0
thenV2 cV;

Again, thefirst conditionisstandard in regular unification. Condition 2 saysthat the most
genera unifier* hasto restrict the set of accessible antecedents aslittle as possible when
identifying pronouns. To unify V4 :u and V,: v it suffices to take any non-empty subset
of the intersection of V, and V5, but thisfact may prohibit some antecedents from being
accessible, although they arein fact accessible for both pronouns.

Definition 5 (The Labeled Unification Algorithm). First, the unification function unify*
isapplied to apair of atoms, and then it triesto unify the set of corresponding argument
pairs. The algorithm terminates successfully if it did not terminate with failure and no
further equations are applicable.

1. unify*(R(s1...5n), R(t1-.tn))
=unify"({sy ®t1...sn = th})

2. unify*({f(sy...n) = f(t1...tn) JUE)
=unify*({sy = t1...sn ® th} UE)

3. unify*({f(s1...50) = g(t1...tm) JUE), f Zgorn#m
= terminate with failure

4. unify*({x~x}UE
= unify*(E)

5. unify*({t * X} UE),t ¢ VAR
= unify*({x~t} UE)

6. unify*({x=t}UE),x#t,t ¢ LPVAR, xint
= terminate with failure

7. unify*({x~t}UE),x#t,t ¢ LPVAR, xnotint, xin E
= unify*({x =~ t} UE[x/t])

8. unify*({V:u=t*}UE),xeV,V:uinE
= unify*({V:us t*}UE[V:u/t¥])

9. unify*({Vliu ~ V2:V} UE),ViNV, #0,ViNV, CV,
=unify*({V1:ux=ViNVa:v,Vo:v aViNVs:v}

UEML:u/ VNV, v, Vo v/ VNV, V)

Thefirst six equations of the algorithm are the same asin [MM82], except for additional
side conditions which make surethat t is not alabeled variable. Theinteresting casesare
8 and 9. In 8 apronoun is bound to an antecedent and in 9 two pronouns are identified,
i.e., they have the same possi bl e antecedents, namely those which are accessiblefor both
of them. Thisisaccomplished by identifying the pronoun variables and substituting the
set of possible antecedents by the intersection of the possible antecedents of each pro-
noun.

I dentification of pronouns underlies different constraints than binding apronounto a
proper antecedent. To identify two pronounsu and v, itisnot required that u isaccessible
from v, or the other way around. But they can only beidentified if they have at least one
proper accessible antecedent in common.

(16) Buk isapoet. For every man there is awoman who hates him.
I=a There is awoman who hates him.

(17) p(b) A Vx(W(x) = Jy(w(y)Auh(y,u)))
Fa3zZ(W(2)ANh(zV))

For instance, in (16) the conclusion is only valid if the first and the second occurrence
of himareidentified. In Section 2 it was said that universal quantification isabarrier for
flexible binding, and therefore the second occurrence of him cannot be bound to the first
one. On the other hand, both of them have a proper antecedent in common, namely the
constant b representing the proper name Buk. In addition, thefirst occurrence of him has

the variable x as an accessible antecedent, introduced by the universal quantification ev-
ery man. If onewantsto identify them, one hasto take the intersection of both sets of ac-
cessible antecedents and hence drop x as a possible antecedent. Observe that identifica-
tion of pronouns still leaves some space for underspecification, because the intersection
of two pronouns does not have to be a singleton. Of course, identifying two pronouns,
where more than one antecedent is accessible for both, forces them to be bound to the
same element of the intersection. Both can be bound to any element of the intersection,
but it has to be the same one for both pronouns.

If the unification algorithm terminates successfully for apair of literal sP,Q, the solved
set determines a substitution o that isthe mgu* of PQ:

o := {s/t|s=t € unify*(P,Q)}.
A set of equations {s; = ty,...,5 =~ tn} is called solved if

1. s € VARULPVAR and the 5 are pairwise digoint
2. nos occursinatermt; (1<i,j <n).

Lemma 6 (Correctness of the Unification* Algorithm). Let E be a set of equations
and unify*(E) = E/, then

(i) Eisunifiable* iff E' isunifiable*
(i) oisthemgu* of E iff o isthe mgu* of E’

Proof. (i) We have to show that actions 2, 4, 5, 7, 8, and 9 preserve unifiability*, when
unify* is applied to a unifiable* set E. For 2, 4, and 5, thisis obvious. To show it for 7,
note that T := [x/t] is a unifier* of x and t. If o isa unifier* of {x ~t} UE then o is
of the form tp. Because 11 = T, it holds that 0 = 1p = 1Tp = 10. Therefore o unifies*
{x=t}UEiff o unifies* {x =~ t} UE[x/t]. 8 isanaogous to 7, plus the additional side
conditionthat x € V. Thelast caseis9. If {Vi:u=V,:v} UE isunifiable*, thenitiswith
aunifier* o of the form tp with T := [Vy:u/ViNVa:v,Vo:u/Vi NV V).
Again, 0 = 1p = 1Tp = 10 and then ¢ aso unifies*
{M1iumViNViv,Vo v ViNVo i VIUEN iU/ VI NV, v, Vo v/ VNV V).

(i) Theactions 2, 4, 5, 7, and 8 turn a set of equationsinto an equivalent one. For o
to be the mgu* of {V;:u = V,:v}UE meansaccording to our definition that o hasto be
of the form tp, where

T:=[V1:u/VMiNVo:iv,Vo:u/Vi NV V.
But then o is also the mgu* of
{ViiurViNVoiv Voiva ViNVoiVIUEN iu/NV NVL v, Vo v VNV v].O

Lemma 7 (Termination of the Unification*Algorithm). Theunification* algorithmter-
minates for each finite set of equations.

Proof. If rules 3 and 6 are applied, we are done. Otherwise, rule 7 can be applied only
once, because after application the side conditionisno longer fulfilled. In 9it is presup-
posed that V; NV; is a proper subset of V,; this ensures that an application of 9 realy

reduces the set of possible antecedents. Because 9 can be applied only afinite number
of times, it can reintroduce atermV : u only finitely often, therefore rule 8 can also be
applied only finitely many times. Rules 1, 5, and 6 are only applied once, and the num-
ber of possible applications of rule 2 isfinite aswell, because terms contain only finitely
many symbols. Therefore all rules can be applied only finitely many times, and termi-
nation follows. O

Proposition 8 (Total Correctness of the Unification* Algorithm).
The unification* algorithm computes for each finite set of equations E a solved set, that
has the same mgu* as E in finitely many stepsiiff E is unifiable*.

Proof. The fact that the unification* algorithm preserves unifiability* and that it termi-
nates has been proven in Lemma 1 and 2, respectively. It remains to be shown that the
set of equations computed by the algorithm isa solved set. In 7, 8, and 9, the left side of
the equation is always substituted in E by the right side of the equation. If the left side
isidentical to the right side, the equation is erased by rule 4. Therefore, no left side of
an equation occurs somewhere else. O

The Resolution Method. Having defined labeled unification, it is straightforward to
adapt the resolution principle. The only thing we have to change is to make sure that
variable digointness applies only to proper variables (elements of VAR). The function
VAR returns the set of proper variables, when applied to a set of clauses A : VAR(A) =
{x€ VAR| x occursin A}. The resolution rule accomplishing pronoun binding (resp) is
defined as follows:

CU{—|P1,...,—|Pn} DU{Ql,...,Qm}
(Cubmo

(resp)

where e Qq,...,Qnareatomic
e Ttis a substitution such that
VAR(CU{—Py,...,~P})N(VAR(DU{Qq,...,Qm})) =0
e g isthemgu* of {Py,...,Pn, Q1T ..,QmTT}

Definition 9 (The Proof Algorithm). Our proof algorithm prf consists of three steps:

1. annotate the conjunction of the premises and the negation of the conclusion;

2. apply clause form transformation; and

3. apply the resolution rule until a contradiction can be derived, or no new resolvents
can be generated.

An Example. We will only give avery short, and therefore very simple example of a
labeled resolution derivation. We hope that it illustrates some of the aspects of labeled
resolution mentioned before.

Consider example (16) again, here repeated as (18), where (19) isthe corresponding
semantic representation.

(18) Buk isapoet. For every man there is awoman who hates him.
I=a There is awoman who hates him.

(19) p(b) A VX(W(X) > Fy(w(y)Auh(y,u)))
Fa J2W@ANh(ZV))

Annotating (19):
annot(0, p(b) A Yx(wW(X) = Fy(w(y)A?uh(y,u))) A =3z(w(2)ANh(z Vv))) =

p(b) AVX(W(x) = Jy(w(y) Ah(y, {b,x} :u))) A ~3z(w(2) Ah(z {b}:V)))
Clause form transformation:

{P(0P) 3, {m(h")},{=m(x*), w(¥)},{=m(x*), h(Y,{b,x} : u) },{-w(Z*), —h(Z {b} :v)}, where
theadditional clause { m(hh)} stemsfrom the assumption that the domain of menisnonempty.

Resolution:

{p(6°)} {m(h")} {-m(x),w(f¥)} {=m(x),h(f,{b,x}:u)} {-W(Z*),~h(Z; {b}:v)}
A
{=m(x), ~w(f*)}

O

Actually, the only remarkable step in the derivation is resolving

{_'m(x)a h(f, {ba X} : U)} and {_'W(Z)a_'h(za {b} :V)}
with {-=m(x),-w(f)} as the resolvent. Here, the two labeled pronoun variables can be
identified, because the intersection of their accessible antecedentsis nonempty. The cor-
responding mgu* of

{_|m(XX)7 h(fy, {b7 X} : U), _'W(ZZ) ’ _'h(ZZ7 {b} : V)}
iso = [X/Z,7/1Y,{b,x}:u/{b}:v].

Note al so, that although p(b) introduced the antecedent b, it is not used in the deriva-
tion because all information that is necessary to derive the contradiction is captured by
the labels. Thisisthe advantage of using labels; it allows usto express non-local depen-
dency relationsin our framework, which isessential for dealing with pronoun bindingin
dynamic semantics where a pronoun and its antecedent can occur in different formulas.

Evaluation from a Linguistic Point of View. In generdl, it is not enough if one gives
just the information that there is a binding that allows to derive a conclusion, but one
also wants to know which binding. It is easy to augment our method in away such that
it accomplishes this ssmply by memorizing the substitutions of pronoun variables that
occur during aderivation.

From a linguistic point of view, one is also interested in comparing different bind-
ings. If weforcethe proof procedureto backtrack every timeit hasfound abinding which
alowsto derive a contradiction, we can generate all possible bindings. Probably some
of the bindings are preferable to others by taking linguistic heuristics for pronoun reso-
Iution into account, seefor instance [GJW95], but thisis beyond the scope of the present

paper.

3.3 Reaults

Before we prove completeness and soundness of our method, we have to explain what
these notions mean in our setting.

To show that the resolution principleis correct we have to find the right loop invari-
ant. We will show that if the parent clauses of aresolution step are strongly satisfiable,
then so is the resolvent.

Definition 10 (Strong Satisfiability). We say that a clause C is strongly satisfiable if
thereisamodel M and for all substitutions © from PVAR to VAR), then thereis aliteral
L € CH, suchthat M |= L.

Lemmall. LetCU{-Py,...,~Py} andDU{Qy,...,Qm} bevariabledisjoint and strongly
satisfiable. If o isthe mgu* of {Py,...,Pn,Q1,...,Qm}, then Co\{-P10} UDc\{P,0}
isstrongly satisfiable.

Proof. The set of possible disambiguations of the resolvent is a subset of the possible
disambiguations of the parent clauses, because possible antecedents are unified, and in
case of pronoun unification only the intersection of possible antecedents has to be con-
sidered. Now, two cases have to be distinguished.

(i) M~ Po. Because Pioisaninstance of P, and DU {Qq,...,Qm} isstrongly satisfi-
able, it holdsthat M = Do\{P;0}. But Do\ {P;0} isasubset of the resolvent and
therefore M |= Co\{-P,0} UDac\{P,0}.

(i) M = Po. Again, Poisan instance of P, and CU {—=Py,...,—Py} is strongly sat-
isfiable. Hence, it holds that M |= Co\{-P,0} and thereby M |= Co\{-P,0} U
Do\{Pi0}. O

Corollary 12 (Soundness). If prf (see Definition 9) producesthe empty clause on input
=, then ¢ isvalid.

Proof. If we can derive O from a set of clauses C, where C is the clause form of —¢,
then we can show by induction that C is not strongly satisfiable, i.e., there is no model
M such that M = CB for all possible substitutions. Hence, for all models M, thereisa
disambiguation 8, such that M [~ &(—¢), which is equivalent to M =5 ¢, the definition
of ¢ being valid. O

Lemma 13. Let 6 be a total disambiguation of ¢, and assume that $0 is unsatisfiable.
Then thereis a (classical) resolution deduction of O from ¢©.

Lemma 14. Let 6 be a total disambiguation of ¢. If there is a resolution deduction of
O from ¢6, then prf generates the empty clause on input ¢.

Proof. Theideaof the proof isto turn the classical resolution proof of O from &(¢) into
alabeled resolution proof of O from the original formula ¢ by repeating the resolution
steps and inserting the required substitutions (i.e., partial disambiguations) just before
any steps where they were used in the original proof.

Although theideaof this proof issimple, the detail s are too numerousto beincluded
here. O

Corollary 15 (Completeness). If ¢ isvalid, then prf generates the empty clause on in-
put —|¢.

4 Related Work

Most work inthe area of ambiguity and discourse semantics focuses on representational
issues, but see [VEJ96,MdR98] for calculi for quantificational ambiguities. Approaches
that deal with pronoun binding are mostly trying to bind pronouns by applying some
heuristics. Thework that is closest to oursisthe approach of Kohlhaseand Konrad [KK 98]
who deal with pronoun binding in the setting of natural language corrections by using
higher-order unification, and a higher-order tableaux method [K0h95] to reason about
possible bindings. Van Eijck [VE98] presents a sequent calculus for DPL which deals
with some of the complications we avoided in this paper; for instance multiple quantifi-
cation of the same variable. Some of the ways in which dynamic updating can restrict
possible pronoun bindings are considered in [Mon98].

5 Conclusion

Inthis paper we have presented aresolution cal culusfor reasoning with ambiguitiestrig-
gered by pronouns and the different ways to bind them. Deduction steps and pronoun
bindings are interleaved with the effect that only pronounsthat are used during aderiva-
tion are bound to a possible antecedent. L abelsallow usto capture relevant structural in-
formation of the original formulaon avery local level, namely by annotating variables.
Therefore structural manipulation, a prerequisite of any efficient proof method, does no
harm.

Our ongoing work focuses on two aspects. First, we have to see how our resolution
method behaves when other strategies restricting the search space are added; e.g., set-
of-support strategy, ordered unification, or subsumption checking. Second, we areinthe
process of implementing the annotation and unification* algorithms and are trying to
integrate them into a resolution theorem prover.

Acknowledgment. The research in this paper was supported by the Spinoza project
‘LogicinAction’ at ILLC, University of Amsterdam.

References

[GIW95] B. Grosz, A. Joshi, and S. Weinstein. Centering: A framework for modelling the local
coherence of discourse. Computational Linguistics, 21(2), 1995.

[GS91] J. Groenendijk and M. Stokhof. Dynamic Predicate Logic. Linguistics and Philosophy,
14:39-100, 1991.

[Kam81] H.Kamp. A theory of truth and semantic representation. In J. Groenendijk et al., editor,
Formal Methods in the Sudy of Language. Mathematical Centre, Amsterdam, 1981.

[KK98] M. Kohlhase and K. Konrad. Higher-order automated theorem proving for natural lan-
guage semantics. SEKI-Report SR-98-04, Universitét des Saarlandes, 1998.

[Koh95] M. Kohlhase. Higher-order tableaux. In P. Baumgartner et al., editor, Theorem Proving
with Analytic Tableaux and Related Methods, TABLEAUX' 95, LNAI, pages 294-309.
Springer, 1995.

[Lov78] D.W. Loveland. Automated Theorem Proving: A Logical Bases. North-Holland, Ams-
terdam, 1978.

[MdR98] C. Monz and M. de Rijke. A tableaux calculus for ambiguous quantification. In
H. de Swart, editor, Automated Reasoning with Analytic Tableaux and Related Meth-
0ds, TABLEAUX’98, LNAI 1397, pages 232—246. Springer, 1998.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4:258-282, 1982.

[Mon98] C. Monz. Dynamic semantics and underspecification. In H. Prade, editor, Proceedings
of the 13" European Conference on Artificial Intelligence (ECAI’ 98), pages 201-202.
John Wiley & Sons, 1998.

[Rey93] U. Reyle. Dealing with ambiguities by underspecification: Construction, representation,
and deduction. Journal of Semantics, 10(2):123-179, 1993.

[RN95] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

[Rob65] J. A. Robinson. A machine oriented logic based on the resolution principle. Journal of
the ACM, 12(1):23-41, 1965.

[VE98] J.vanEijck. A calculusfor dynamic predicate logic. Unpublished manuscript, 1998.

[VEJ96] J. van Eijck and J. Jaspars. Ambiguity and reasoning. Technical Report CS-R9616,
Centrum voor Wiskunde en Informatica, Amsterdam, 1996.

