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Abstract. Inthispaper, an application of automated theorem proving techniques
to computational semanticsis considered. In order to compute the presuppositions
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from formal approaches to context into deduction can help to compute presup-
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1 Introduction

The notion of presupposition has a long tradition in natural language semantics; from
early philosophical approaches (e.g., [Str50]) to recent computational approaches (e.g.,
[PK99]). Almost all accounts of presupposition rely on contextual information in order
to compute the presuppositions of a natural language expression. The role that context
plays hereby can be seen best by considering an example.

(1) a Hank likes hiswife.
b. Every man who has awife likes hiswife.

The noun phrase his wife behaves as a presupposition trigger which reguires that the
context in which (1.a) has been uttered provides information allowing to conclude that
Hank is married. Compare thisto (1.b) where the presupposition trigger hiswife occurs
in the scope of every and the restrictor is man who has a wife. It is not necessary that
the context in which (1.b) is uttered contains the fact that the referent of hisis married,
because this information is provided by the relative clause modifying man, where we
tacitly assume that the possessive pronoun hisrefersto a man. One can say that therela-
tiveclauseisalocal context augmenting the global context in which the whole sentence
ocCurs.



Presupposition triggers are resolved against their local context. If this context pro-
vides the presupposed information, then we say that the presupposition does not project.
If, on the other hand, the local context does not provide the presupposed information, it
does project.

How do we decide whether the context already provides the information expressed
by the presupposition trigger? There are basically two ways: [Kar74] states that a pre-
supposition Ttis contained by its context CON if CON logically entails T, i.e., if CON |=
TL The second way, as it has been proposed by [vdS92], is to consider presuppositions
as anaphoric expressions that have to be resolved against their context. Whereas Kart-
tunen’s approach is easy to grasp, we explain van der Sandt’s approach in some more
detail in the following section. His approach is especially worth considering because,
up to now, it seems to be the best approach according to the range of phenomena that
can be correctly predicted.

Themain goal of this paper isto show how the actual computation of presupposition
projection can be improved by combining context and automated deduction. For more
genera information on context anditsusein linguisticsthereader isrefereed for instance
to [Sta9s].

One of the few implemented NLP systems which actually compute presupposition
projections in natural language discourses is DORIS, cf. [BBKdN99]. We will have a
closer look at DORI Slater on, and seehow formal theories of context, e.g., [AS94a,AS94b],
can help devising more efficient and el egant deduction methods for computing presup-
positions.

This paper can beregarded as afollow-up of [Mon99], where some of the techniques
we are using here have been introduced and applied to a simpler definition of context.
Now, we apply some of these techniquesto amore complex notion of context employing
Discourse Representation Theory (DRT, cf. [KR93]), on which van der Sandt’s theory
of presupposition projection is based.

Therest of this paper isorganized asfollows. Section 2 briefly explainsvander Sandt’s
theory of presupposition projection, and shows how it isimplemented inthe DORIS sys-
tem. Section 3 introduces a way of extracting the inference problems that arise during
the computation of presuppositions and how these problems can be expressed in afash-
ion that considers the way context is nested within a discourse. In addition, we present
atableau calculus that can be applied to expressions representing contextual informa-
tion explicitly. Finally, some conclusions and prospects for future work are provided in
Section 4.

2 Presupposition in DRT

This section provides some background on van der Sandt’s approach on treating presup-
positions as anaphora. After having introduced the basic data structures, van der Sandt’s
algorithm for presupposition projection is explained. The second subsection shows how
thisisrealized in the DORIS system and to which extent theorem proving is employed.



2.1 Representing Presuppositions as Anaphora

Before we embark on van der Sandt’s theory, the concept of an anaphor is briefly ex-
plained. An anaphor, or anaphoric expression, refers back to something that has been
mentioned before. Simple examples are the pronouns he, she, and it. They refer to a
(fe)male person, or thing mentioned before, without imposing any further constraints on
it. Definite noun phrases containing a possessive pronoun, such as hiswife, impose more
constraints. Here, we arelooking for aparti cular woman mentioned before, who also has
to be the wife of a male person who has been mentioned before, too. Obviously, con-
textual information is necessary to determine the meaning (reference) of an anaphoric
expression, and this is also the reason for the strong similarity of presuppositions and
anaphora.

Next, we see how anaphoricity is expressed within DRT. DRT iswell-suited for ex-
plaining anaphoraresol ution, because it is adynamic semantics, mainly devised for rep-
resenting the meaning of discourses, and describing theway contextual information flows
through adiscourse. The basic datastructures of DRT are Discourse Representation Struc-
tures (DRSs) which hold the semantic content of sentencesasapair (U,C), inwhich U
isaset of variables (or referents) and C isa set of conditions upon them.

Definition 1 (Discour se Representation Structure). If U isaset of referents, andCis
aset of conditions, then (U,C) isaDRS. Let Kq,K5 be DRSs, then K is a condition, if
itis of the following form:

K= P(X]_...Xn) | =Ky | K1 = Ky | K1V Ky | a: Ky

wherex; ... X, are discourse referents and U is asubset of the discourse referents of K;.

Alternatively, wewill sometimeswrite DRSsas X ... Xm|Cs . . . Cn] becauseitislessspace
consuming.

Another important notion within DRT is the accessibility relation which can hold
between two DRSs.

Definition 2 (Accessibility). A DRSK; isaccessible from aDRSK, withinaDRSKg
if Ky occurs within a condition of Ky or one of the following holds:

Ki =Ky Ki =Ky € Gy

Note, that accessibility istransitive, i.e., if Ky isaccessible from K, and K, isaccessible
from K3, then K7 isalso accessible from K.

Dueto thelimitation of space, we cannot provide any further details on DRT, but the
reader isreferred to [KR93] for a comprehensive introduction to DRT.

In[vdS92] presupposition triggersare expressed by a-DRSs.! Consider the sentences
in (2) and their respective DRSsin (3).

(2) a Every manlikeshiswife.
b. Every man who has awife likes hiswife.

1 [vdS92] does not call them a-DRSs, but here, | follow [Bos94], a very slight modification of
van der Sandt’s theory, which can be implemented more straightforwardly.
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u Xy u
a X |wife(u) b. |[man(x) wife(u)
man(x) = o:[V] wife(y) =% a:[Vv]
of(u,v) of (y,X) of(u,v)

like(x,u) like(x,u)

In (3.a), one variablex (or referent) isintroduced by the antecedent of the conditional of
the DRS. In addition, there is a free variable u to which an a-DRS is attached. This a-
DRS contains three conditions. The first condition says that the person u is referring to
hasto beawife. a:| v |isagain an anaphor whichisreferring to somebody in the context,
i.e., the accessible DRSs. Finally, both persons have to bein the of-relation.

The a-DRSin (3.b) is exactly the same asin (3.a), but they occur in different con-
texts. To see whether an a-DRS can be resolved, one has to check whether the DRS
that results from substituting the variable which is the argument of the a-operator by
an accessible variable is a sub-DRS of the DRS representing the context. The sub-DRS
relation is defined as follows:

Definition 3 (Sub-DRS). Kj isanimmediate sub-DRS of Kg = (Ug,Cp), if Ky = Kg or
ace Cyisof theform:

=K, Ki = Kj, KiVKJ‘, ora:K;

where eitheri=1o0r j = 1.

The sub-DRS relation is the transitive and reflexive closure of the immediate sub-DRS
relation; i.e., if Ky isan immediate sub-DRS of K», then K; isasub-DRS of K5, and, if
K1 isasub-DRS of K, and K, isa sub-DRS of K3, then K; isasub-DRS of K.

Inthe sequel, acontext isrepresented by a DRS. To see whether aDRSK; occurring
in a DRS Ky is entailed by its context, we need an algorithmic way to determine the
context of Ky with respect to K.

Definition 4 (Context-DRS). GivenaDRSKg = (Ug,Cq) and asub-DRSK; of Kq, the
context-DRS of K; with respect to Ky can be computed recursively:

con(Ky,Kg) = (Ug,Co\{c}) ® con(Ky,c) if Ky occursinc, ¢ € Cy
con(Kl, Ko) = <0, 0) if Kl = KO
con(Ky,c) = Ky ®con(Ky,K) if cisof the form:

Ko = K3, where Ky isasub-DRS of K3
con(Ky,c) = con(Ky,Kj) if cisof theform:

Kz = Ky, K3V Ky, Ky VK3, =Kz or a : Kz

where K, isasub-DRS of K3

In Definition 4 we use the merging function & (cf. [Zee89]) which allows the infor-
mation expressed by two DRSsto be merged into one DRS.

Definition 5 (Merging DRSs). Given two DRSsK; = (U1,C;) and K, = (U, C,), the
merge K1 & K; is simply defined as (U; UU,,C; UGC,), the union of the universes and
conditions.



Definition 5 assumes that the universes of the DRS are distinct. This meansthat in gen-
eral variablesare supposed to beintroduced only once; i.e., theDRSare pure, cf. [KRI6].
Although Definition 5 introduces the most simple way of merging, it does not impose
any severe restrictions on the expressiveness of the DRS language; but cf. [VEK97] for
an overview on different ways of merging.

Theresolutiontasksof (3.a) and (3.b) areasfollows. In (3.a), theonly variablethat is
accessiblefrom v isx, and we seeimmediately that wife(x) doesnot occur in the context-
DRS of the a-DRS. Hence, the a-DRSin (3.8) cannot be resolved; i.e., the presupposi-
tion projects. In (3.b) on the other hand, substituting v by y allows to wife(y) because it
occurs already in the context. Now, substituting u by x allowsto solve the whole resolu-
tion task as of (y,x) as also part of the context. After resolution, the a-DRSs are simply
deleted. Because the resolution task in (3.b) can be solved, the presupposition does not
project.

In [vdS92], presupposition projection is considered as an instance of accommoda-
tion, cf. [Lew79]. Accommodation isastrategy to repair the context in away such that it
alows to conclude the presupposed material. In DRT, repairing the context amountsto
adding the presupposed material (the a-DRS) to the context. As contexts arerepresented
as DRSs which have themselves internal structure, it is possible to insert an a-DRSin
several positionsin the context. In general, three kinds of accommodation can be distin-
guished. Considering (3.a), they result in (4).

global intermediate local
(4 a gccommodation b. accommodation C. accommodation
u
wife(u)
of(u,x) Xu u
X N man(x)| _ X _, [like(xu)
man(x) like(x,u) wife(u) like(x,u) man(x) wife(u)
of(u,x) of(u,x)

In (4), the accommodated material istypeset initalics. Global accommodation adds the
presupposed material to the outer-most DRSthat is part of the context. Intermediate ac-
commodeation addsthe a-DRSto some DRSthat isa proper sub-DRS of the context, but
not the DRS in which the a-DRS occurs as a condition. Local accommodation simply
adds the content of the a-DRS to the DRS where the a-DRS occurs as a condition.

According to [vdS92], it is only possible to accommodate an a-DRS if it contains
conditions upon the presupposed variable. Therefore, it is possible to accommodate u
and the relevant conditions, but it is not possible to accommodate v, because a:| v | does
not contain any further restrictionsonv. a:| v | can only be resolved against the context.
In(4), a:[v]isresolved to x, the only accessible variable, and v is substituted by x in
(4.9 «4.c).

Deciding which of the different ways of accommodation are correct underliescertain
criteria. First of all, accommodation cannot lead to free occurrences of avariable. This
constraint isviolated by (4.a), where x occursfreein of(u,x). In addition, accommodation
should preserve local consistency and local informativity, see [Bea97].



Definition 6 (Local Informativity). No sub-DRSis redundant. If K’ is a sub-DRS of
K, then K islocally informative if con(K',K) £ K'.

Definition 7 (Local Consistency). No sub-DRSisinconsistent. If K is a sub-DRS of
K, then K islocally consistent if con(K',K) @K' }= L; i.e, if con(K',K) @K' is satisfi-
able.

How the accommaodati ons violating one of those constraintsarefiltered out in acom-
putational way will be considered in the next subsection.

2.2 Implementing Anaphora Resolution

The DORI S system (Discourse Oriented Representation | nference System), cf. [BBKdAN99],
parses a natural language discourse and generates the corresponding DRS representing
itssemantic content. Thisalsoinvolvesatreatment of presuppositions. Given asequence
of sentences, a DRS possibly containing a-DRSs (unresolved presuppositions) is con-
structed. Then, a generate-and-test procedure returns al DRSs where the presupposed
materia is either resolved or accommodated and which do not violate the constraints
mentioned above.

For instance, if Kq represents a discourse and a sub-DRS K, of Kq contains an a-
DRS a : K3 as a condition, then after resolving &l simple a-DRSs of the form a :[x]
to some accessible variable in con(K3z, Kp), three possible ways of accommodation are
generaly possible. In general, local informativity means that the local context of the
accommodation site merged with the accommodation siteitself do not entail the accom-
modated DRS. Analogously, local consistency holdsif the merge of the local context of
the accommodation site and the accommodation site itself and the accommodated DRS
is consistent. Global accommodation generates a DRS where K3 is added to Kg; i.e.,
Ko @ Kz is generated. To see whether this obeys local informativity, we have to check
whether con(Kp,Kg) @ Ko £ Kz holds. Similarly, being locally consistent means that
con(Kp,Kg) @ Kg & K3 has to be satisfiable. Intermediate accommodation adds K3 to a
sub-DRS K; of Kg, which is accessible from K3 and K; # Kq and Ky # K,. Again, if
K1 @ Kz islocally informative and consistent, it hasto hold that con(Ky,Kg) @ K [~ Kg,
and con(Ky,Kg) ® K3 @ K3 hasto be satisfiable. Finally, if K3 islocally accommodated,
then it hasto bethe case that con (K, Ko) @ K [~ Ks holds (locally informative) and that
con (K3, Ko) @ K, @ K3 issatisfiable (Iocally consistent). Summing up, we present the six
inference tasks that are connected to the different ways of accommodation in Table 1.

Local informativity and consistency can be decided by having run atheorem prover
on the different inference tasks.? In the sequel, we will focus on local informativity, and
the way how it can be computed more efficiently.

Consider example (5.8) and its DRS (5.b).

(5) a Hankismarried. Every man likes hiswife.

2 Another and maybe better way of solving the problem of satisfiability isto apply amodel gen-
erator to the satisfiability task, cf. [BBKAN99].



informativity consistency

global | con(Kg,Kg) @Ko ¥ Kz | con(Kg,Kg)®Ko®Kg issatisfisble
interm. | con(K1,Kg) @Ky ¥ Kz | con(Kp,Kp) ®Ki @ Kg issatisfisble
local con(Kp,Kg) @Ky I/ Kz | con(Kp,Kg) @Ky @Kz issatisfigble

Table 1. Inference tasks for computing informativity and consistency

b. X
hank(x)
married(x)
u
y |wife(u)
man(y) = | a:[v]
of(u,v)
like(y,u)

Any straightforward approach to computing the possible accommodation sites has
to face five inference tasks, see Table 2, where -7 is an inference task.

If the a-DRS s globally accommodated, only one inference task arises as resolving
v toy isruled out because it violates the free-variable condition. Intermediate and local
accommodation have to consider two cases, respectively: onein which v isresolved to
X, (i) and (iv), and the other wherev isresolvedtoy, asin (iii) and (v). DORI'S computes
the five inference tasks (i)—(v) independently of each other. In this example, the proving
method will filter out (i), (iii), and (v), because these arethe valid inferences, and thereby
they violate local informativity. and (ii) and (iv) remain as possible accommodations
sites, since the a-DRSs do not follow from their respective contexts; i.e., they passthe
local informativity check.

What is striking about Table 2, is that the DRSs share alot of information. For in-
stance, theinformation stemming fromthefirst sentencein (5), namely ({x},{hank(x), married(x) })
occurs in the premise DRS of al five inferences. Therefore, the corresponding deduc-
tion rules are applied five timesto exactly the sameformulas. Asfar as (5) is concerned,
this does not appear to be too dramatic, because this redundancy concerns only the in-
troduction of x and two conditions. On the other hand, in general, the presupposition
trigger hiswife in (5) can occur in amuch larger context, containing not only one sen-
tence expressing that Hank is married, but arbitrarily many sentences. In this case, the
corresponding DRS representing that context would be much more complex, and con-
sequently the redundancy of treating that context five times would have a much bigger
impact on the performance of the computation of the possible accommodation sites: it
would slow down significantly.



Global accommodation

X
hank(x)
married(x)
u
(i) — F? |wife(u)
y Ll wife® of (u,x)
man(y) Ta:[v]
of(u,v)
like(y,u)
I ntermediate accommodation
Xy T Xy T
. hank(x) o i hank(x) o i
O marienco) ™ [0l O mariede) (G
man(y) : man(y) :
Local accommodation |
Xy m Xy m
. hank(x) 2 |wi hank(x) 2 |wi
) | marriedoo| ‘;Vf'gj()‘:)) ™) marriedog| Vggzj(;’))
man(y) ' man(y) '

Table 2. Theinference tasks of (5)

3 Integrating Context into Deduction

In the previous section, we have seen that a significant amount of redundancy arises if
possi ble accommodation sites are computed in astraightforward way. Thisismainly due
to thefact the different inference tasks are treated independently of each other, although
they share some information. It is possible to overcome the problem of redundancy by
taking context into account. In order to do this, we need aricher language that enablesus
to express nesting of contexts. Here, we use the in-predicate, cf. [AS94a,AS94b], which
takes two arguments. The first argument is a DRS representing the contextual addition,
and the second is a conjunction of DRSs and maybe further in-formulas. The second
argument represents the consequence that has to hold in the context represented by the
first argument. in(Ky, ) istrueif Ky - ¢.2 Since ¢ itself can contain an in-predicate, we
are ableto nest contexts. E.g., in(Ky,§ Ain(Ko, W) istrueif Ky o and Ky @ Ko - . In

3 Wedlightly diverge from [AS94a,A S94b] where the argument positions of in areinterchanged.



this case, K, isalocal context for Y. A language containing the in-predicate functions
like a meta-language of reasoning, and in the sequel, we give a corresponding tableau
calculus. Extending the DRSIanguage with thein predicate resultsin the language £°".

Definition 8 (The Language £°"). £ is defined recursively as follows, where Ky
and K, are DRSs;

¢ = P(Xl...Xn) | =K1 | K1 = Ky | K1 VK, | in(Kl,(I))

Note, that L°" does not contain a-conditions, aswe assumethat theformulasof £°"
represent possible accommodations. £°" isnot used in order to expressthe semantics of
anatural language discourse, but only for expressing which accommodated DRSs have
to be evaluated against which context. The purpose of £ isto express these local in-
formativity problemsin a non-redundant fashion. In £L%" it is now possible to express
the five inference tasksin (2) by asingle formula:

(6) in([x|hank(x), married(x)], [u|wife(u),of (u,X)]
Ain([y|man(y)], [u|wife(u), of (u,X)]
V[u|wife(u),of (u,y)]))

The first in-predicate describes the global context asit was relevant for deciding (i)
in Table 2. The nested in-predicate augments the global context for deciding whether in-
termediate and local accommodation are locally informative. In this example, it is not
necessary to distinguish between the informativity of intermediate and local accommo-
dation because the DRS which isthe local accommodation site does not add any further
information to the DRS functioning as the intermediate accommodation site; cf. (ii)—
(iv), where the context-DRS remains the same. The disjunction represents the two ways
in which the pronouns for intermediate and local accommodation can be resolved; i.e.,
(ii,iv) vs. (iii,v).

Beforeatableau calculusfor L" ispresented, it is necessary to show how theinfer-
encetasksarising by aDRSK containing a-DRSs can be extracted from K and re-stated
in £ in a compact way. We define a function T from DRSsto £%°". The function T is
defined in Table 3. Asthe definition is rather complex and we have only limited space,
we just try to sketchitsrationale. T isrecursively applied to aDRS, and it takes two ad-
ditional parameters: a DRS K representing the current relevant context, and a set A of
variables consisting of all accessible variables. It is necessary to keep track of the acces-
sible variables as we have to resolve a-DRSs of the form a:[x], and substitute x by an
accessible variable. During thefirst application of T to aDRS, the parameter K is set to
T, i.e., the empty or true DRS, and A = 0, as no variables have been introduced so far.

The rulesin Table 3 are subdivided into three sets of rules. First, if we encounter a
DRS which has a-DRSs as sub-DRSs, then all the a-DRSs are added as conditions of
the subordinating DRS. If it is the global DRS, this amounts to global accommodeation.
The resulting DRS is embedded in an in-predicate if the context is not trivid; i.e., the
context-DRS does not equal T. Otherwise, the resulting DRS is not embedded in the
in-predicate.



UigRA = | G (ALK TAWY A )tVIAY K £ T
(AL a:KPTAYY A (C 0y TV AW ifK=T

(C,Cq)UK@lIdA  if ¢ does not contain an a-DRS

(Cu{c},Co)W A=
(C,Cqu{c})"KA if c containsan a-DRS

in(K, AL ¢ TR ifK#AT

n T7T7A H —
i=1Ci ifK=T

(0,{cy,...,ca}) VKA = {

a: [UIC]PKA = in(K, VL  [UIGT"TA) ifK#T
| VL uGeA ifK=T

whereC4,...,C, arelike C but all variables x that occur in an a-DRS of
theforma: are substitued in C by avariable occurring in A; i.e., the
universe of the context. In addition, al a-DRSs of theform a: are
deleted inCq,...,C,

uieea_ AL TR ACOTIAL) i 4 7
(AL a:K"TAYY) A (c oylu A ifK=T
) G,
([U1|C1] = KZ)T,K,A _ [U1|C1}T’K’A/\ K; K®[U1|Cy],AUUL

(Kl Vv KQ)T’K’A — K}_’K’A A KI’K’A
Table 3. Extracting informativity tasks from DRSs

The second set of rules sorts conditions which contain a-DRSs and those which do
not. All conditionswhich do not contain a-DRSs are simply added to the context. L ater,
the a-DRSs will be evaluated against this context.

The last set of rules mirrors how contextua information is threaded through condi-
tions. For instance, the antecedent of an implication is accessible from the succedent,
therefore, the antecedent is added to the context parameter of the succedent. Note, that
therulesin Table 3 also take care of the free variable constraint, as a-DRSs of the form
a:[x]areonly resolved against the respective contexts of their accommodation sites.

The main advantage of this transformation is that DRS conditions that are used to
prove local informativity have to be considered only once. For instance, in (6), it is not
necessary to mention again the conditions that are part of the global DRS for checking
local informativity of both ways of local accommodation (i.e., whether v isresolved to
x ory). In (6), both local accommodation problems are embedded in the global context.
Therefore, we can apply the appropriate tableau expansion rule to the in-predicate.

The most important rule of our tableau calculus 7" istherule (—: in). Before we
introduce the other rules, it is helpful to have acloser ook at (—: in), in order to under-



stand the way context is represented in 7",

(i707_) m(Kad)) (—iin)
(j,ou{i},+):K
(j,ou{i},-):¢

To keep track of the contextual information, labels are attached to the nodes of the
tableau. A label hastwo arguments. Itsfirst argument i isanatural number (i € IN), which
isthe identifier of the context. |.e., if two nodes have the same number as the first argu-
ment of their labels, then they belong to the same context. The second argument o isa
set of natural numbers. This set contains the identifiers of the contexts that are acces-
sible. We say that a context K; is accessible from aformula y, if there is a formula of
the form in(Ky,$) and @ is a subformula of ¢. For instance, considering the formula
in(K1,® Ain(Ko, W)), K; isaccessible from ¢ and in(Kj, ). Also K; is accessible from
Y. Since accessibility is transitive, it holds that K, is accessible from ; but K5 is not
accessible from ¢ because ¢ is not embedded in K, by an in-predicate.

The (— :in)-ruleissimilar to the upwards direction (entering a context) of the (CS)-
rulein [BM93]: ek, O

l‘i iSt(Klad))

K represents a sequence of contexts and the upwards direction of the rule saysthat if it
istruein the context K that ¢ holdsin the extension with k1, then ¢ holdsin the context
K x K1 itself. Comparing (CS) to (—: in), we can say that K correspondstocU {i} and j,
theidentifier of the context extension with K and not ¢, correspondsto K;.

Table 4 gives the complete set of tableau rules. The rules for the usual boolean con-
nectives and quantifiers are omitted, but cf. [Fit96] for a comprehensive introduction to
tableau methods.

The contextua information carried by the labels becomes important when we want
to define the closure conditions of a branch.

(CS

Definition 9 (Closure of a Branch). A branch of atableau treeis closed if it contains
two nodes of theform (i,0,+) :R(t; ...ty) and (j,0’,—) :R(t] ...t},) such that

(8 tm andt/,, are unifiable (1 < m< n), and

() ()i=jor(iyied or(ii)jeo

(a) is the standard condition on branch closure. (b) considers three cases. If i = |,
then both literals belong to the same context. If i € o, then ¢ belongsto an extension of
j. The case where j € o isanalogous to the previous one.

4 Conclusions and Future Work

Computing the presuppositions of a natural language discourse is an important task for
anatural language processing system. Employing alanguage like £°°" allowsfor anon-
redundant way of stating inference problemsthat arisein the computation of presupposi-
tions. To thisend, we presented away of extracting local informativity tasks from DRSs



(1,0, +):in(K, $) (,0,2):in(0)

(+:in) - - -
(o0}, K[GoUtT 6 FaCti e

(i,0,=):[X1...%n|C]

(i,0,4):[X1..-xn|C]

(+V) (=u
(i,0,+) X1 - Xn_1|C[x/f (X1... Xn)]] (i,0,=):[X1...Xn_1|C[x/X]]
(""_’“:['{_C}s < o (,0,):l{euc]
P (.0, ):C] (0, )re
(if0’+):_|K(+:ﬂK) (ifc’_):_'K(f;ﬁK)
(i,0,-):K (i,0,4):K
(i,0,4):[X1...Xn|C1] = Kz - (i,0,—):[X1...Xn|C1] = K2 )

(1,0, 4) pXaXn 1 Cilxa/X]] (1,0,4): a1 |Calxn/f (Xa. Xen)]

Gotylcl=k ho)llcl=ke
(+= i .
(.0, 1C2[(,0,1) Kz AL
(i,0,—):KyVKz B

(i,0,+): Ky VK (=v)

, , (+v) i,0,—):K
(|707+):K1‘(|a0a+):K2 ELO’_g:K;

Table 4. The tableau rules of 7¢"

and re-stated them in £, In addition, a tableau calculus 7°°" has been presented, al-
lowing to compute informativity problems more efficiently than approaches neglecting
context.

Our future work will focus on combining theorem proving and presupposition pro-
jection. I.e., whether apresupposition projectsor not isonly computed if thisisnecessary
in order to derive acertain conclusion. Thiswork isaong the lines of [MdR98,MdR99],
but it has to deal with more complex data structures representing the context, namely
DRSs. In order to to so we have to consider computing local consistency, too; but we
think that this can be efficiently accomplished similar to theway local informativity was
computed in this paper.
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