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In this paper, an application of automated theorem proving techniques
to computational semantics is considered. In order to compute the presuppositions
of a natural language discourse, several inference tasks arise. Instead of treating
these inferences independently of each other, we show how integrating techniques
from formal approaches to context into deduction can help to compute presup-
positions more efficiently. Contexts are represented as Discourse Representation
Structures and the way they are nested is made explicit. In addition, a tableau cal-
culus is present which keeps track of contextual information, and thereby allows
to avoid carrying out redundant inference steps as it happens in approaches that
neglect explicit nesting of contexts.
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1 Introduction

The notion of presupposition has a long tradition in natural language semantics; from
early philosophical approaches (e.g., [Str50]) to recent computational approaches (e.g.,
[PK99]). Almost all accounts of presupposition rely on contextual information in order
to compute the presuppositions of a natural language expression. The role that context
plays hereby can be seen best by considering an example.

(1) a. Hank likes his wife.
b. Every man who has a wife likes his wife.

The noun phrase his wife behaves as a presupposition trigger which requires that the
context in which (1.a) has been uttered provides information allowing to conclude that
Hank is married. Compare this to (1.b) where the presupposition trigger his wife occurs
in the scope of every and the restrictor is man who has a wife. It is not necessary that
the context in which (1.b) is uttered contains the fact that the referent of his is married,
because this information is provided by the relative clause modifying man, where we
tacitly assume that the possessive pronoun his refers to a man. One can say that the rela-
tive clause is a local context augmenting the global context in which the whole sentence
occurs.



Presupposition triggers are resolved against their local context. If this context pro-
vides the presupposed information, then we say that the presupposition does not project.
If, on the other hand, the local context does not provide the presupposed information, it
does project.

How do we decide whether the context already provides the information expressed
by the presupposition trigger? There are basically two ways: [Kar74] states that a pre-
supposition π is contained by its context CON if CON logically entails π, i.e., if CON

� �
π. The second way, as it has been proposed by [vdS92], is to consider presuppositions
as anaphoric expressions that have to be resolved against their context. Whereas Kart-
tunen’s approach is easy to grasp, we explain van der Sandt’s approach in some more
detail in the following section. His approach is especially worth considering because,
up to now, it seems to be the best approach according to the range of phenomena that
can be correctly predicted.

The main goal of this paper is to show how the actual computation of presupposition
projection can be improved by combining context and automated deduction. For more
general information on context and its use in linguistics the reader is refereed for instance
to [Sta98].

One of the few implemented NLP systems which actually compute presupposition
projections in natural language discourses is DORIS, cf. [BBKdN99]. We will have a
closer look at DORIS later on, and see how formal theories of context, e.g., [AS94a,AS94b],
can help devising more efficient and elegant deduction methods for computing presup-
positions.

This paper can be regarded as a follow-up of [Mon99], where some of the techniques
we are using here have been introduced and applied to a simpler definition of context.
Now, we apply some of these techniques to a more complex notion of context employing
Discourse Representation Theory (DRT, cf. [KR93]), on which van der Sandt’s theory
of presupposition projection is based.

The rest of this paper is organized as follows. Section 2 briefly explains van der Sandt’s
theory of presupposition projection, and shows how it is implemented in the DORIS sys-
tem. Section 3 introduces a way of extracting the inference problems that arise during
the computation of presuppositions and how these problems can be expressed in a fash-
ion that considers the way context is nested within a discourse. In addition, we present
a tableau calculus that can be applied to expressions representing contextual informa-
tion explicitly. Finally, some conclusions and prospects for future work are provided in
Section 4.

2 Presupposition in DRT

This section provides some background on van der Sandt’s approach on treating presup-
positions as anaphora. After having introduced the basic data structures, van der Sandt’s
algorithm for presupposition projection is explained. The second subsection shows how
this is realized in the DORIS system and to which extent theorem proving is employed.



2.1 Representing Presuppositions as Anaphora

Before we embark on van der Sandt’s theory, the concept of an anaphor is briefly ex-
plained. An anaphor, or anaphoric expression, refers back to something that has been
mentioned before. Simple examples are the pronouns he, she, and it. They refer to a
(fe)male person, or thing mentioned before, without imposing any further constraints on
it. Definite noun phrases containing a possessive pronoun, such as his wife, impose more
constraints. Here, we are looking for a particular woman mentioned before, who also has
to be the wife of a male person who has been mentioned before, too. Obviously, con-
textual information is necessary to determine the meaning (reference) of an anaphoric
expression, and this is also the reason for the strong similarity of presuppositions and
anaphora.

Next, we see how anaphoricity is expressed within DRT. DRT is well-suited for ex-
plaining anaphora resolution, because it is a dynamic semantics, mainly devised for rep-
resenting the meaning of discourses, and describing the way contextual information flows
through a discourse. The basic data structures of DRT are Discourse Representation Struc-
tures (DRSs) which hold the semantic content of sentences as a pair � U � C � , in which U
is a set of variables (or referents) and C is a set of conditions upon them.

Definition 1 (Discourse Representation Structure). If U is a set of referents, and C is
a set of conditions, then � U � C � is a DRS. Let K1 � K2 be DRSs, then K is a condition, if
it is of the following form:
K ::

�
P � x1 ����� xn � �
	 K1

�
K1 � K2

�
K1 � K2

�
α : K1

where x1 ���
� xn are discourse referents and U �1 is a subset of the discourse referents of K1.

Alternatively, we will sometimes write DRSs as � x1 �
��� xm
�
c1 �
��� cn � because it is less space

consuming.
Another important notion within DRT is the accessibility relation which can hold

between two DRSs.

Definition 2 (Accessibility). A DRS K1 is accessible from a DRS K2 within a DRS K0
if K2 occurs within a condition of K1 or one of the following holds:
K1

�
K2, K1 � K2 � C0

Note, that accessibility is transitive, i.e., if K1 is accessible from K2 and K2 is accessible
from K3, then K1 is also accessible from K3.

Due to the limitation of space, we cannot provide any further details on DRT, but the
reader is referred to [KR93] for a comprehensive introduction to DRT.

In [vdS92] presupposition triggers are expressed by α-DRSs.1 Consider the sentences
in (2) and their respective DRSs in (3).

(2) a. Every man likes his wife.
b. Every man who has a wife likes his wife.

1 [vdS92] does not call them α-DRSs, but here, I follow [Bos94], a very slight modification of
van der Sandt’s theory, which can be implemented more straightforwardly.



(3)

a. x

man(x) � α :

u

wife(u)
α : v
of(u,v)

like(x,u)

b.

x y

man(x)
wife(y)
of(y,x)

� α :

u

wife(u)
α : v
of(u,v)

like(x,u)

In (3.a), one variable x (or referent) is introduced by the antecedent of the conditional of
the DRS. In addition, there is a free variable u to which an α-DRS is attached. This α-
DRS contains three conditions. The first condition says that the person u is referring to
has to be a wife. α: v is again an anaphor which is referring to somebody in the context,
i.e., the accessible DRSs. Finally, both persons have to be in the of-relation.

The α-DRS in (3.b) is exactly the same as in (3.a), but they occur in different con-
texts. To see whether an α-DRS can be resolved, one has to check whether the DRS
that results from substituting the variable which is the argument of the α-operator by
an accessible variable is a sub-DRS of the DRS representing the context. The sub-DRS
relation is defined as follows:

Definition 3 (Sub-DRS). K1 is an immediate sub-DRS of K0
� � U0 � C0 � , if K1

�
K0 or

a c � C0 is of the form:	
Ki, Ki � K j , Ki � K j , or α : Ki

where either i
�

1 or j
�

1.
The sub-DRS relation is the transitive and reflexive closure of the immediate sub-DRS
relation; i.e., if K1 is an immediate sub-DRS of K2, then K1 is a sub-DRS of K2, and, if
K1 is a sub-DRS of K2 and K2 is a sub-DRS of K3, then K1 is a sub-DRS of K3.

In the sequel, a context is represented by a DRS. To see whether a DRS K1 occurring
in a DRS K0 is entailed by its context, we need an algorithmic way to determine the
context of K1 with respect to K0.

Definition 4 (Context-DRS). Given a DRS K0
� � U0 � C0 � and a sub-DRS K1 of K0, the

context-DRS of K1 with respect to K0 can be computed recursively:����� � K1 � K0 � � � U0 � C0 ��� c ����� ����� � K1 � c � if K1 occurs in c � c � C0����� � K1 � K0 � � � /0 � /0 � if K1
�

K0����� � K1 � c � �
K2 � ����� � K1 � K � if c is of the form:
K2 � K3 , where K1 is a sub-DRS of K3����� � K1 � c � � ����� � K1 � K3 � if c is of the form:
K3 � K2 � K3 � K2 � K2 � K3 � 	 K3 or α : K3
where K1 is a sub-DRS of K3

In Definition 4 we use the merging function � (cf. [Zee89]) which allows the infor-
mation expressed by two DRSs to be merged into one DRS.

Definition 5 (Merging DRSs). Given two DRSs K1
� � U1 � C1 � and K2

� � U2 � C2 � , the
merge K1 � K2 is simply defined as � U1  U2 � C1  C2 � , the union of the universes and
conditions.



Definition 5 assumes that the universes of the DRS are distinct. This means that in gen-
eral variables are supposed to be introduced only once; i.e., the DRS are pure, cf. [KR96].
Although Definition 5 introduces the most simple way of merging, it does not impose
any severe restrictions on the expressiveness of the DRS language; but cf. [vEK97] for
an overview on different ways of merging.

The resolution tasks of (3.a) and (3.b) are as follows. In (3.a), the only variable that is
accessible from v is x, and we see immediately that wife(x) does not occur in the context-
DRS of the α-DRS. Hence, the α-DRS in (3.a) cannot be resolved; i.e., the presupposi-
tion projects. In (3.b) on the other hand, substituting v by y allows to wife(y) because it
occurs already in the context. Now, substituting u by x allows to solve the whole resolu-
tion task as of(y,x) as also part of the context. After resolution, the α-DRSs are simply
deleted. Because the resolution task in (3.b) can be solved, the presupposition does not
project.

In [vdS92], presupposition projection is considered as an instance of accommoda-
tion, cf. [Lew79]. Accommodation is a strategy to repair the context in a way such that it
allows to conclude the presupposed material. In DRT, repairing the context amounts to
adding the presupposed material (the α-DRS) to the context. As contexts are represented
as DRSs which have themselves internal structure, it is possible to insert an α-DRS in
several positions in the context. In general, three kinds of accommodation can be distin-
guished. Considering (3.a), they result in (4).

(4) a.
global
accommodation b.

intermediate
accommodation c.

local
accommodation

u

wife(u)
of(u,x)

x

man(x) � like(x,u)

x u

man(x)
wife(u)
of(u,x)

� like(x,u)

x

man(x) �
u

like(x,u)
wife(u)
of(u,x)

In (4), the accommodated material is typeset in italics. Global accommodation adds the
presupposed material to the outer-most DRS that is part of the context. Intermediate ac-
commodation adds the α-DRS to some DRS that is a proper sub-DRS of the context, but
not the DRS in which the α-DRS occurs as a condition. Local accommodation simply
adds the content of the α-DRS to the DRS where the α-DRS occurs as a condition.

According to [vdS92], it is only possible to accommodate an α-DRS if it contains
conditions upon the presupposed variable. Therefore, it is possible to accommodate u
and the relevant conditions, but it is not possible to accommodate v, because α: v does
not contain any further restrictions on v. α : v can only be resolved against the context.
In (4), α : v is resolved to x, the only accessible variable, and v is substituted by x in
(4.a)–(4.c).

Deciding which of the different ways of accommodation are correct underlies certain
criteria. First of all, accommodation cannot lead to free occurrences of a variable. This
constraint is violated by (4.a), where x occurs free in of(u,x). In addition, accommodation
should preserve local consistency and local informativity, see [Bea97].



Definition 6 (Local Informativity). No sub-DRS is redundant. If K � is a sub-DRS of
K, then K is locally informative if ����� � K �!� K �#"� � K � .
Definition 7 (Local Consistency). No sub-DRS is inconsistent. If K � is a sub-DRS of
K, then K is locally consistent if �
��� � K �$� K � � K � "� �&%

; i.e., if ����� � K �$� K � � K � is satisfi-
able.

How the accommodations violating one of those constraints are filtered out in a com-
putational way will be considered in the next subsection.

2.2 Implementing Anaphora Resolution

The DORIS system (Discourse Oriented Representation Inference System), cf. [BBKdN99],
parses a natural language discourse and generates the corresponding DRS representing
its semantic content. This also involves a treatment of presuppositions. Given a sequence
of sentences, a DRS possibly containing α-DRSs (unresolved presuppositions) is con-
structed. Then, a generate-and-test procedure returns all DRSs where the presupposed
material is either resolved or accommodated and which do not violate the constraints
mentioned above.

For instance, if K0 represents a discourse and a sub-DRS K2 of K0 contains an α-
DRS α : K3 as a condition, then after resolving all simple α-DRSs of the form α : x
to some accessible variable in ����� � K3 � K0 � , three possible ways of accommodation are
generally possible. In general, local informativity means that the local context of the
accommodation site merged with the accommodation site itself do not entail the accom-
modated DRS. Analogously, local consistency holds if the merge of the local context of
the accommodation site and the accommodation site itself and the accommodated DRS
is consistent. Global accommodation generates a DRS where K3 is added to K0; i.e.,
K0 � K3 is generated. To see whether this obeys local informativity, we have to check
whether ����� � K0 � K0 � � K0 "� � K3 holds. Similarly, being locally consistent means that����� � K0 � K0 � � K0 � K3 has to be satisfiable. Intermediate accommodation adds K3 to a
sub-DRS K1 of K0, which is accessible from K3 and K1 "� K0 and K1 "� K2. Again, if
K1 � K3 is locally informative and consistent, it has to hold that �
��� � K1 � K0 � � K1 "� � K3,
and ����� � K1 � K0 � � K1 � K3 has to be satisfiable. Finally, if K3 is locally accommodated,
then it has to be the case that ����� � K2 � K0 � � K2 "� � K3 holds (locally informative) and that����� � K2 � K0 � � K2 � K3 is satisfiable (locally consistent). Summing up, we present the six
inference tasks that are connected to the different ways of accommodation in Table 1.

Local informativity and consistency can be decided by having run a theorem prover
on the different inference tasks.2 In the sequel, we will focus on local informativity, and
the way how it can be computed more efficiently.

Consider example (5.a) and its DRS (5.b).

(5) a. Hank is married. Every man likes his wife.

2 Another and maybe better way of solving the problem of satisfiability is to apply a model gen-
erator to the satisfiability task, cf. [BBKdN99].



informativity consistency

global ')(+*-, K0 . K0 /10 K0 23 K3 ')(4*4, K0 . K0 /50 K0 0 K3 is satisfiable

interm. ')(+*-, K1 . K0 /10 K1 23 K3 ')(4*4, K1 . K0 /50 K1 0 K3 is satisfiable

local ')(+*-, K2 . K0 /10 K2 23 K3 ')(4*4, K2 . K0 /50 K2 0 K3 is satisfiable

Table 1. Inference tasks for computing informativity and consistency

b. x

hank(x)
married(x)

y

man(y) � α :

u

wife(u)
α : v
of(u,v)

like(y,u)

Any straightforward approach to computing the possible accommodation sites has
to face five inference tasks, see Table 2, where 6 ? is an inference task.

If the α-DRS is globally accommodated, only one inference task arises as resolving
v to y is ruled out because it violates the free-variable condition. Intermediate and local
accommodation have to consider two cases, respectively: one in which v is resolved to
x, (ii) and (iv), and the other where v is resolved to y, as in (iii) and (v). DORIS computes
the five inference tasks (i)–(v) independently of each other. In this example, the proving
method will filter out (i), (iii), and (v), because these are the valid inferences, and thereby
they violate local informativity. and (ii) and (iv) remain as possible accommodations
sites, since the α-DRSs do not follow from their respective contexts; i.e., they pass the
local informativity check.

What is striking about Table 2, is that the DRSs share a lot of information. For in-
stance, the information stemming from the first sentence in (5), namely � � x �+� � hank � x � � married � x � �5�
occurs in the premise DRS of all five inferences. Therefore, the corresponding deduc-
tion rules are applied five times to exactly the same formulas. As far as (5) is concerned,
this does not appear to be too dramatic, because this redundancy concerns only the in-
troduction of x and two conditions. On the other hand, in general, the presupposition
trigger his wife in (5) can occur in a much larger context, containing not only one sen-
tence expressing that Hank is married, but arbitrarily many sentences. In this case, the
corresponding DRS representing that context would be much more complex, and con-
sequently the redundancy of treating that context five times would have a much bigger
impact on the performance of the computation of the possible accommodation sites: it
would slow down significantly.



Global accommodation

(i)

x

hank(x)
married(x)

y

man(y) � α :

u

wife(u)
α : v
of(u,v)

like(y,u)

3 ?
u

wife(u)
of(u,x)

Intermediate accommodation

(ii)

x y

hank(x)
married(x)

man(y)

3 ?

u

wife(u)
of(u,x)

(iii)

x y

hank(x)
married(x)

man(y)

3 ?

u

wife(u)
of(u,y)

Local accommodation

(iv)

x y

hank(x)
married(x)

man(y)

3 ?

u

wife(u)
of(u,x)

(v)

x y

hank(x)
married(x)

man(y)

3 ?

u

wife(u)
of(u,y)

Table 2. The inference tasks of (5)

3 Integrating Context into Deduction

In the previous section, we have seen that a significant amount of redundancy arises if
possible accommodation sites are computed in a straightforward way. This is mainly due
to the fact the different inference tasks are treated independently of each other, although
they share some information. It is possible to overcome the problem of redundancy by
taking context into account. In order to do this, we need a richer language that enables us
to express nesting of contexts. Here, we use the 7 � -predicate, cf. [AS94a,AS94b], which
takes two arguments. The first argument is a DRS representing the contextual addition,
and the second is a conjunction of DRSs and maybe further 7 � -formulas. The second
argument represents the consequence that has to hold in the context represented by the
first argument. 7 � � K1 � ϕ � is true if K1 6 ϕ.3 Since ϕ itself can contain an 7 � -predicate, we
are able to nest contexts. E.g., 7 � � K1 � ϕ 897 � � K2 � ψ ��� is true if K1 6 ϕ and K1 � K2 6 ψ. In

3 We slightly diverge from [AS94a,AS94b] where the argument positions of :;* are interchanged.



this case, K2 is a local context for ψ. A language containing the 7 � -predicate functions
like a meta-language of reasoning, and in the sequel, we give a corresponding tableau
calculus. Extending the DRS language with the in predicate results in the language < con.

Definition 8 (The Language < con). < con is defined recursively as follows, where K1
and K2 are DRSs:

ϕ ::
�

P � x1 ����� xn � �=	 K1
�
K1 � K2

�
K1 � K2

� 7 � � K1 � ϕ �
Note, that < con does not contain α-conditions, as we assume that the formulas of < con

represent possible accommodations. < con is not used in order to express the semantics of
a natural language discourse, but only for expressing which accommodated DRSs have
to be evaluated against which context. The purpose of < con is to express these local in-
formativity problems in a non-redundant fashion. In < con it is now possible to express
the five inference tasks in (2) by a single formula:

(6) 7 � ��� x � hank � x � � married � x �>� �
� u �wife � u � � of � u � x �$�8?7 � ��� y �man � y �@� �A� u �wife � u � � of � u � x �$�� � u �wife � u � � of � u � y �$�>���
The first in-predicate describes the global context as it was relevant for deciding (i)

in Table 2. The nested in-predicate augments the global context for deciding whether in-
termediate and local accommodation are locally informative. In this example, it is not
necessary to distinguish between the informativity of intermediate and local accommo-
dation because the DRS which is the local accommodation site does not add any further
information to the DRS functioning as the intermediate accommodation site; cf. (ii)–
(iv), where the context-DRS remains the same. The disjunction represents the two ways
in which the pronouns for intermediate and local accommodation can be resolved; i.e.,
(ii,iv) vs. (iii,v).

Before a tableau calculus for < con is presented, it is necessary to show how the infer-
ence tasks arising by a DRS K containing α-DRSs can be extracted from K and re-stated
in < con in a compact way. We define a function τ from DRSs to < con. The function τ is
defined in Table 3. As the definition is rather complex and we have only limited space,
we just try to sketch its rationale. τ is recursively applied to a DRS, and it takes two ad-
ditional parameters: a DRS K representing the current relevant context, and a set A of
variables consisting of all accessible variables. It is necessary to keep track of the acces-
sible variables as we have to resolve α-DRSs of the form α : x , and substitute x by an
accessible variable. During the first application of τ to a DRS, the parameter K is set toB

, i.e., the empty or true DRS, and A
�

/0, as no variables have been introduced so far.

The rules in Table 3 are subdivided into three sets of rules. First, if we encounter a
DRS which has α-DRSs as sub-DRSs, then all the α-DRSs are added as conditions of
the subordinating DRS. If it is the global DRS, this amounts to global accommodation.
The resulting DRS is embedded in an 7 � -predicate if the context is not trivial; i.e., the
context-DRS does not equal

B
. Otherwise, the resulting DRS is not embedded in the7 � -predicate.



C
U DC E τ F K F A G HI J :K*-, K . ,>L n

i M 1 α :Kτ F N�F A O U
i /5PRQ C . /0 S τ F TU U V F A O U / if K 2GXW

, L n
i M 1 α :Kτ F N�F A O U

i /1PRQ C . /0 S τ F TU U V F A O U if K GXW
Q C Y[Z c \ . Cα S τ F K F A G

HI J Q C . Cα S τ F K ]�T U c V F A if c does not contain an α-DRSQ C . Cα Y[Z c \�S τ F K F A if c contains an α-DRS

Q /0 . Z c1 ._^_^@^=. cn \�S τ F K F A G HI J :;*-, K . L n
i M 1 cτ F N`F A

i / if K 2GXW
L n

i M 1 cτ F N�F A
i if K GXW

α :
C
U DC E τ F K F A G HI J :;*�, K .!a n

i M 1
C
U DCi E τ F N`F A / if K 2GbW

a n
i M 1

C
U DCi E τ F N�F A if K GbW

where C1 ._^_^_^
. Cn are like C but all variables x that occur in an α-DRS of
the form α : x are substitued in C by a variable occurring in A; i.e., the
universe of the context. In addition, all α-DRSs of the form α : x are
deleted in C1 ._^_^_^
. Cn

,>c CU DC E / τ F K F A G
HI J :;*-, K . , L n

i M 1 α :Kτ F N�F A O U
i /1PRQ C . /0 S τ F TU U V F A O U / if K 2GbW

,>L n
i M 1 α :Kτ F N�F A O U

i /1PRQ C . /0 S τ F TU U V F A O U if K GbW
, CU1 DC1 E � K2 / τ F K F A G C

U1 DC1 E τ F K F A P Kτ F K ]�TU1 UC1 V F A O U1
2, K1 d K2 / τ F K F A G Kτ F K F A

1 P Kτ F K F A
1

Table 3. Extracting informativity tasks from DRSs

The second set of rules sorts conditions which contain α-DRSs and those which do
not. All conditions which do not contain α-DRSs are simply added to the context. Later,
the α-DRSs will be evaluated against this context.

The last set of rules mirrors how contextual information is threaded through condi-
tions. For instance, the antecedent of an implication is accessible from the succedent,
therefore, the antecedent is added to the context parameter of the succedent. Note, that
the rules in Table 3 also take care of the free variable constraint, as α-DRSs of the form
α : x are only resolved against the respective contexts of their accommodation sites.

The main advantage of this transformation is that DRS conditions that are used to
prove local informativity have to be considered only once. For instance, in (6), it is not
necessary to mention again the conditions that are part of the global DRS for checking
local informativity of both ways of local accommodation (i.e., whether v is resolved to
x or y). In (6), both local accommodation problems are embedded in the global context.
Therefore, we can apply the appropriate tableau expansion rule to the 7 � -predicate.

The most important rule of our tableau calculus e con is the rule ��f : 7 � � . Before we
introduce the other rules, it is helpful to have a closer look at ��f : 7 � � , in order to under-



stand the way context is represented in e con.

� i � σ �
f � : 7 � � K � ϕ �� j � σ  g� i �+�ih � :K jlk : m nio
� j � σ  p� i �+�
f � :ϕ

To keep track of the contextual information, labels are attached to the nodes of the
tableau. A label has two arguments. Its first argument i is a natural number (i � IN), which
is the identifier of the context. I.e., if two nodes have the same number as the first argu-
ment of their labels, then they belong to the same context. The second argument σ is a
set of natural numbers. This set contains the identifiers of the contexts that are acces-
sible. We say that a context K1 is accessible from a formula ψ, if there is a formula of
the form 7 � � K1 � ϕ � and ψ is a subformula of ϕ. For instance, considering the formula7 � � K1 � ϕ 8q7 � � K2 � ψ ��� , K1 is accessible from ϕ and 7 � � K2 � ψ � . Also K2 is accessible from
ψ. Since accessibility is transitive, it holds that K1 is accessible from ψ; but K2 is not
accessible from ϕ because ϕ is not embedded in K2 by an 7 � -predicate.

The �rf : 7 � � -rule is similar to the upwards direction (entering a context) of the (CS)-
rule in [BM93]: 6 κ̄ s κ1 ϕ6 κ̄ t�u5v � κ1 � ϕ � j CS o
κ̄ represents a sequence of contexts and the upwards direction of the rule says that if it
is true in the context κ̄ that ϕ holds in the extension with κ1, then ϕ holds in the context
κ̄ w κ1 itself. Comparing (CS) to ��f : 7 � � , we can say that κ̄ corresponds to σ  x� i � and j,
the identifier of the context extension with K and not ϕ, corresponds to κ1.

Table 4 gives the complete set of tableau rules. The rules for the usual boolean con-
nectives and quantifiers are omitted, but cf. [Fit96] for a comprehensive introduction to
tableau methods.

The contextual information carried by the labels becomes important when we want
to define the closure conditions of a branch.

Definition 9 (Closure of a Branch). A branch of a tableau tree is closed if it contains
two nodes of the form � i � σ �_h � :R � t1 ����� tn � and � j � σ �$��f � :R � t �1 �
��� t �n � such that

(a) tm and t �m are unifiable (1 y m y n), and
(b) (i) i

�
j or (ii) i � σ � or (iii) j � σ

(a) is the standard condition on branch closure. (b) considers three cases. If i
�

j,
then both literals belong to the same context. If i � σ � , then ϕ belongs to an extension of
j. The case where j � σ is analogous to the previous one.

4 Conclusions and Future Work

Computing the presuppositions of a natural language discourse is an important task for
a natural language processing system. Employing a language like < con allows for a non-
redundant way of stating inference problems that arise in the computation of presupposi-
tions. To this end, we presented a way of extracting local informativity tasks from DRSs



, i . σ .!z{/ : :;*-, K . ϕ /, j . σ Y[Z i \ ._|?/ :K , j . σ Y[Z i \ .!z{/ :ϕ }�~ : m ni� , i . σ ._|�/ : :K*-, K . ϕ /, j . σ Y[Z i \ .>z#/ :K }l� : m ni�
, j . σ Y[Z i \ ._|?/ :ϕ

, i . σ .!z{/ : C x1 ^_^_^ xn DC E, i . σ .>z#/ : C x1 ^_^_^ xn � 1 DC C x � f , X1 ^_^_^ Xn / EKE }�~ :U � , i . σ ._|?/ : C x1 ^_^_^ xn DC E, i . σ ._|�/ : C x1 ^_^_^ xn � 1 DC C x � X E;E }l� :U �
, i . σ .!z{/ : C D Z c \�Y C E, i . σ .!z{/ : C DC E }K~ :C �

, i . σ .>z#/ :c

, i . σ .@|?/ : C D Z c \�Y C E, i . σ ._|�/ : C DC E , i . σ .@|?/ :c }l� :C �
, i . σ .>z#/ : c K, i . σ .@|?/ :K }K~ : � K � , i . σ ._|?/ : c K, i . σ .!z#/ :K }�� : � K �

, i . σ .!z#/ : C x1 ^_^@^ xn DC1 E � K2, i . σ .>z#/ : C x1 ^�^ xn � 1 DC1
C
xn � X EKE }K~ : �?�_� , i . σ ._|�/ : C x1 ^_^_^ xn DC1 E � K2, i . σ .!z{/ : C x1 ^K^ xn � 1 DC1

C
xn � f , X1 ^K^ Xm / EKE }l� : �?�_�

, i . σ .>z#/ : C DC1 E � K2, i . σ ._|?/ : C DC1 E , i . σ .!z#/ :K2 }�~ : �{� , i . σ ._|?/ : C DC1 E � K2, i . σ .!z#/ : C DC1 E }K~ : �#�
, i . σ .@|?/ :K2

, i . σ .>z#/ :K1 d K2, i . σ .>z#/ :K1 , i . σ .!z{/ :K2 }K~ : �5� , i . σ ._|?/ :K1 d K2, i . σ .@|?/ :K1 }l� : �5�
, i . σ .@|?/ :K2

Table 4. The tableau rules of � con

and re-stated them in < con. In addition, a tableau calculus e con has been presented, al-
lowing to compute informativity problems more efficiently than approaches neglecting
context.

Our future work will focus on combining theorem proving and presupposition pro-
jection. I.e., whether a presupposition projects or not is only computed if this is necessary
in order to derive a certain conclusion. This work is along the lines of [MdR98,MdR99],
but it has to deal with more complex data structures representing the context, namely
DRSs. In order to to so we have to consider computing local consistency, too; but we
think that this can be efficiently accomplished similar to the way local informativity was
computed in this paper.
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