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Abstract

Research on question answering dates back to the 1960s but has more recently been revisited as part
of TREC’s evaluation campaigns, where question answering is addressed as a subarea of information
retrieval that focuses on specific answers to a user’s information need. Whereas document retrieval
systems aim to return the documents that are most relevant to a user’s query, question answering
systems aim to return actual answers to a users question. Despite this difference, question answering
systems rely on information retrieval components to identify documents that contain an answer to a
user’s question. The computationally more expensive answer extraction methods are then applied
only to this subset of documents that are likely to contain an answer. As information retrieval
methods are used to filter the documents in the collection, the performance of this component is
critical as documents that are not retrieved are not analyzed by the answer extraction component.
The formulation of queries that are used for retrieving those documents has a strong impact on the
effectiveness of the retrieval component. In this paper, we focus on predicting the importance of terms
from the original question. We use model tree machine learning techniques in order to assign weights
to query terms according to their usefulness for identifying documents that contain an answer. Term
weights are learned by inspecting a large number of query formulation variations and their respective
accuracy in identifying documents containing an answer. Several linguistic features are used for
building the models, including part-of-speech tags, degree of connectivity in the dependency parse
tree of the question, and ontological information. All of these features are extracted automatically
by using several natural language processing tools. Incorporating the learned weights into a state-of-
the-art retrieval system results in statistically significant improvements in identifying answer-bearing
documents.

1 Introduction

Current question answering systems rely on document retrieval as a means of identifying
documents which are likely to contain an answer to a user’s question. The documents re-
turned by the retrieval engine are then further analyzed by computationally more expensive
techniques to identify an answer to a given question.

The effectiveness of the retrieval component is critical for the performance of a question
answering system: If the retrieval system fails to find any relevant documents for a ques-
tion, further processing steps to find an answer will inevitably fail as well. Ittycheriah et al.
(2001) have carried out a component-based error analysis and have found that after answer
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selection most errors of their question answering system are attributable to the information
retrieval component.

The role of retrieval for question answering has recently attracted more attention, and
in 2005, the TREC evaluation conference devoted a task to evaluate the effectiveness of
different retrieval approaches in the context of question answering.

In particular, the way queries are formulated has a strong impact on retrieval effective-
ness. While most current, high-performing retrieval approaches, such as the vector space
model, or language model are less strict with respect to presence or absence of query terms
in documents, they are still sensitive to query formulation. Using all content words from
the question for the query can steer the retrieval process in a wrong direction. For example,
consider question (1).

(1) What is the abbreviation for the London stock exchange?

It seems natural to include the word abbreviation in a query like (2).

(2) abbreviation London stock exchange

However, most documents that contain an answer to question (1), express it in the form
of ‘. . . London Stock Exchange (LSE). . . ,’ not using the term abbreviation or one of its
morphological variants at all.

Even in vector-space retrieval, a query such as (2) will prefer documents containing
the term abbreviation over those that do not contain it, although, as discussed above, most
documents providing an answer to question (1) do not contain it. The reason is that the term
abbreviation receives a high term weight during document ranking, because it is much less
frequent in the collection than the other terms in (2), and is therefore considered a well-
discriminating term for this query. The discriminatory power of a term t is often measured
by its inverse document frequency (idf):

idf (t) = log
N

df (t)

where N is the number of documents in the collection and df (t) is the number of docu-
ments in which t occurs. Note that the discussion above is not specific to questions asking
for abbreviations but also applies to other questions where the answer type is explicitly
mentioned in the question, but unlikely to occur explicitly in a document containing a
potential answer, such as ‘which person’, ‘what month’, etc.

Our approach on the other hand does not measure the discriminatory power of a term
in general, but instead tries to predict the importance of a term for a given question by
applying machine learning techniques. The learned importance weights are then used to
improve the retrieval process.

Learning query term weights is appealing in the context of question answering because
a user’s information need is expressed as a well-formed sentence as opposed to sets of
keywords, used in regular information retrieval. This allows one analyze the question by
using natural language processing tools, such as parsers and POS taggers (Hermjakob
2001), to extract features from the question that help predict query term weights.

The remainder of this paper is organized as follows: The next section discusses related
approaches. Section 3 discusses the impact of optimal query formulation, and Section 4
investigates how query term weights can be computed. In Section 5, we discuss how
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words can be represented by features. The model tree learning approach, which we use to
learn term weights is introduced in Section 6, and Section 7 presents experimental results.
Section 8 provides some conclusions and discusses open issues.

2 Related work

Previous work on query formulation for question answering has mainly been done for Web
question answering. Brill, Dumais and Banko (2002) focus on formulating query strings
that approximate the way an answer is likely to be expressed. This involves automatically
mapping the syntax of an interrogative to the syntax of a declarative sentence. For instance,
the AskMSR system (Brill et al. 2002) generates for question (3.a) the retrieval queries in
(3.b).

(3) a. Where is the Louvre Museum located?
b. ‘‘the Louvre Museum is located’’
‘‘the Louvre Museum is in’’

‘‘the Louvre Museum is near’’

‘‘the Louvre Museum is’’

Louvre AND Museum AND near

Documents are required to either match one of the strings or the boolean query. This
approach can be considered rather brute force, trying a number of query variants and the
issue of term importance is not addressed.

Paşca (2001) does address the issue of term selection and term relevance. His work is
closely related to the work presented in this paper. For query formulation, he distinguishes
between three types of terms: high-relevance, medium-relevance, and low-relevance query
terms. Deciding which class a given term belongs to is based on a number of rules, some
of which are also integrated in our approach. One significant difference to his approach is
that we predict the actual importance of a term in a more fine-grained way using numerical
values. Note, our predicted term weights can also be negative, indicating that including
such a term into the query will harm retrieval performance. Paşca’s low relevance category
on the other hand just indicates that including the term is unlikely to increase retrieval
performance.

Harabagiu et al. (2001) use a tight integration of answer extraction and retrieval. Their
approach allows for several iterations where the formulation of the retrieval query depends
on the success or failure of the answer extraction component during the previous iteration.
For each retrieval formulation step the decision which terms to include in a query is based
on a number of sophisticated heuristics. Similar to (Brill et al. 2002), their approach does
not include weights for query terms.

The work by Ittycheriah et al. (2001) uses machine learning techniques to rank sentences
taken from the list of documents returned by a retrieval engine. Their approach is based
on Maximum Entropy classification to score each snippet. Most of the six features used
in their method are either count- or distance-based while the approach described here also
uses syntactic and ontological features.

Although machine learning techniques have been used before to find answer extraction
patterns, see, e.g., (Ravichandran and Hovy 2002; Lita and Carbonell 2004; Yousefi and
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Kosseim 2006), it has rarely been applied before to query formulation in the context of
question answering. Radev et al. (2001) use an expectation maximization approach to learn
paraphrases of question for query formulation, where query reformulations are learned
iteratively from retrieved documents.

On the other hand, machine learning has been applied to query formulation in the context
of ad hoc retrieval. Cooper, Chen and Gey (1993) use logistic regression to assign weights
to matching clues, such as the number of times a term occurs in the query, the number of
times a query term occurs in a document, the idf score of a matching term, and the number
of distinct terms common to both query and document. In addition, they assigned weights
to query terms in case some relevance information is available, as is the case in document
routing or feedback retrieval. Chen et al. (1998) did apply machine learning techniques for
selecting query terms, but it was done in the context of relevance feedback retrieval. More
recently, Bendersky and Croft (2008) developed an approach to identify the most important
concepts in verbose ad hoc retrieval queries. Their approach used purely statistical features
in addition to a simple capitalization indicator.

The work by Lee et al. (2009), is to some extent related to the work described here as it
uses regression to rank terms in queries according to their importance. On the other hand,
their approach uses this information to expand queries, while our approach is concerned
with term selection.

The approaches by Mayfield and McNamee (2005) and Agichtein, Lawrence and
Gravano (2004) are to some extent complementary to our work as they expand retrieval
queries with terms or phrases that are likely to be found in the context of phrases which
are of the expected answer type. While the approach in Mayfield and McNamee is based
on simple co-occurrence statistics, Agichtein et al. also incorporate the BM25 retrieval
weighting scheme to assign weights to phrases used for expanding the original query.

The work by Bilotti et al. (2007) on query formulation focuses on structured queries that
reflect the argument structure of the question and the corresponding argument structure in
the answer-bearing sentences.

3 Optimal query term selection

The first step is to estimate the effect query formulation, in the form of term selection, can
have on retrieval performance. To this end we use the TREC-9, TREC-10, and TREC-11
data sets consisting of 500 different questions each and the AQUAINT document collec-
tion. At TREC-9 and TREC-10, participants were required to return up to five answer-
document-id pairs for each question, where the answer can be any text string contain-
ing maximally 50 characters, and the document-id refers to the document from which
the answer was extracted. At TREC-11, participants were required to return one answer-
document-id pair for each question.

For evaluating the retrieval effectiveness, we use NIST’s judgment files. A judgment
file indicates for each submitted answer-document-id pair, whether the answer is correct.
Questions with no correct answer were disregarded, as we are unable to tell whether no
correct answer for this question exists in the collection or whether all of the participants
failed to return a correct answer.
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The set of documents that are known to contain a correct answer form the gold standard
for our evaluation, which contains 480, 433 and 455 questions for TREC-9, TREC-10, and
TREC-11, respectively.1 Using the TREC judgment files resulted in the following average
numbers of relevant documents: 10.7 (TREC-9, standard deviation: 12.4), 9.2 (TREC-10,
standard deviation: 10.1), and 4.4 (TREC-11, standard deviation: 4.0).

Although our gold standard contains only a portion of all the documents containing an
answer, Keenan, Smeaton and Keogh (2001) conclude that effective systems are likely to
distinguish themselves using only a portion of all relevant documents for evaluation.

In order to compute the optimal term selection for each question, we compare all pos-
sible ways of selecting terms from a question. That is, given a question q in which the
set of terms T occurs, we consider all possible subsets of T , and evaluate the respective
performances. More formally, the set of term selection variants (tsv) is defined as:

tsv(q) = POW(T ) − {∅}(4)

where POW(T ) is the power set, the set of all subsets, of the set T . Obviously, the empty
subset is disregarded. Consider question (5.a), which contains the morphologically
stemmed terms in (5.b).

(5) a. What is the chemical formula for sulphur dioxide?
b. T = {chemic, dioxid, formula, sulphur}

Since |T | = 4, there are 24 − 1 = 15 term selection variants. For each query variant a
retrieval process is carried out to compute the average precision. Retrieving documents for
all variants of long questions can become computationally very expensive. On the other
hand this did not affect our experiments as the questions in the TREC data have a limited
number of content words: 3.46 (TREC-9, standard deviation: 1.51), 2.85 (TREC-10, stand-
ard deviation: 1.47), and 3.72 (TREC-11, standard deviation: 1.39). Since the TREC data
sets are used to estimate the parameters offline, this does not affect the applicability of the
resulting model to longer questions.

In the actual retrieval queries, all terms are required to be present in a document. For
instance, the retrieval query corresponding to (5.b) is

chemic AND dioxid AND formula AND sulphur

Note that like all retrieval approaches that do not use query expansion or some form of
concept-based matching this approach will not find documents that do not contain the
actual words from the query but some of their synonyms. Here, we restrict ourselves to
surface matches as expanding query words by their synonyms will further increase the
number of selection variants and previous studies, see, e.g., (Voorhees 1994), have shown
that query expansion with synonyms can lead to decreases in performance.

Table 1 lists all possible selection variants for question (5.a) sorted by their respective
average precision. The query variants can be evaluated with respect to a number of evalu-
ation measures. Here, we used average precision, because it is widely used and combines
precision and recall. Given a query q, its set of relevant documents RELq, and a ranking of

1 The original TREC-9 data set contains 243 additional questions that are reformulations of the
questions in the main TREC-9 set. For our experiments, these variants were disregarded.
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Table 1. Performances of term selection variants

Rank Avg. precision Query variant

1 0.0285 dioxid, sulphur

2 0.0196 chemic, dioxid, sulphur

3 0.0180 sulphur

4 0.0086 chemic, dioxid

5 0.0078 dioxid

6 0.0032 chemic, sulphur

7 0 chemic, formula

8 0 chemic, formula, sulphur

9 0 chemic, dioxid, formula, sulphur

10 0 dioxid, formula

11 0 formula

12 0 formula, sulphur

13 0 chemic

14 0 dioxid, formula, sulphur

15 0 chemic, dioxid, formula

Table 2. Comparison of the f@n scores of optimal retrieval queries to baseline runs. As
these are error rates, lower values are better

TREC-9 TREC-10 TREC-11

f@n Base Opt Red. Base Opt Red. Base Opt Red.

5 0.300 0.177 (−41.0%)� 0.351 0.251 (−28.5%)� 0.477 0.310 (−35.0%)�

10 0.215 0.110 (−48.8%)� 0.266 0.185 (−30.5%)� 0.374 0.233 (−37.7%)�

20 0.155 0.079 (−49.0%)� 0.199 0.113 (−43.2%)� 0.295 0.176 (−40.3%)�

50 0.086 0.044 (−48.8%)� 0.125 0.076 (−39.2%)� 0.205 0.119 (−42.0%)�

documents (rankq : D → �) resulting from the retrieval process, the average precision of
an individual query is defined as:

avg prec(q) =

∑
d∈RELq

p@rankq(d)

|RELq|
(6)

where p@rankq(d) returns the ratio of relevant documents that are ranked at least as high
as document d in the ranking returned by the retrieval system. If d is not included in the
list of returned documents, p@rankq(d) returns 0.

The total number of query variants for all queries of the three data sets are 7,587 (TREC-
9), 6,975 (TREC-10), and 11,957 (TREC-11). In order to determine the maximum reduc-
tions in failure rate one could theoretically gain from query formulation, we determined
the query variant with the highest average precision for each question. Table 2 shows the
gains that can be achieved by using an oracle to pick the optimal query variant.

In ad hoc retrieval, a number of metrics can be used to evaluate the retrieval effect-
iveness, where the choice depends on the application. For instance, in web retrieval it is
common to measure precision at 10, as most search engine users only look at the first page
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of results. For evaluating retrieval systems without a specific scenario in mind it is common
to use mean average precision, which is defined as the average of avg prec(q), as defined
in (6), over a set of queries. In question answering it is common to compute the mean
reciprocal rank (MRR) which is defined as 1/rh, where rh is rank of the highest-ranking
correct answer for a given question. MRR severely penalizes differences in high-ranking
positions, while being less discriminative for lower ranking answers. As the exact position
in the ranking is less important in order to determine the effectiveness of different document
retrieval approaches in the context of question answering we use failure-at-n (f@n) which
is an error rate measuring the percentage of questions for which the system failed to return
at least one document containing an answer in the top-n ranked documents. Focusing on
the the number of questions for which the retrieval system failed (or succeeded) to find
relevant documents up to a certain cut-off is commonly used; see, e.g., (Thompson et al.
1996; Roberts and Gaizauskas 2004). For a specific question q, f@n(q) is a binary-valued
function.

f@n(q) =

{
0 if |{d∈RELq :rankq(d) ≤ n}| ≥ 1
1 otherwise

(7)

The results shown in Table 2 were achieved by comparing the optimal query variant
(Opt), to a commonly used vector-space retrieval approach (Lnu.ltc); see (Singhal et al.
1996), which is discussed in more detail in Section 7.2

As one could expect, query formulation has a significant impact on the overall perform-
ance of a retrieval system, even if query formulation is just based on term selection without
expanding the queries with semantically related terms. This comparison shows that much
can be gained from better query formulation, but, of course, the problem of identifying an
optimal query without having any relevance assessments remains open. In the remainder
we explore ways to solve this issue.

To determine whether the observed differences between two retrieval approaches are
statistically significant and not just caused by chance, we used the bootstrap method, a
powerful nonparametric inference test (Efron 1979). Bootstrapping is more appropriate
than the t-test since it does not assume a normal distribution; a condition that is frequently
not met in information retrieval (Wilbur 1994). Two retrieval methods a and b are com-
pared by one-tailed significance testing. Relative reductions in f @n that are statistically
significant at a confidence level of 95 per cent are marked with ‘�’ and at a confidence
level of 99 pre cent with ‘�’. No mark-up indicates no significant decreases in error rate.

4 Computing query term weights

Our approach is to use the different query variants of a question to distinguish between
terms that help retrieve relevant documents, and terms that harm the retrieval effectiveness
for that particular question. In the previous section, we considered only one single best-
performing query variant for determining the potential gains in retrieval performance, but
often there are several almost equally well-performing query variants. Looking at the
ranked query variants reveals that some terms occur more frequently in higher-ranked

2 We have also experimented with the probabilistic Okapi BM25 measure (Robertson, Walker and
Beaulieu 1998), but the results were almost identical to the ones using Lnu.ltc.



432 C. Monz

Table 3. Example term weights

t w+(t) w−(t) Gain(t)

Sulphur 0.808 0.192 0.616
Dioxid 0.752 0.248 0.506
Chemic 0.367 0.633 −0.266
Formula 0.000 1.000 −1.000

variants than other terms. Consider for instance Table 1, where the terms dioxid and sulphur
occur more often in high-ranked variants than chemic and formula which occur only in
variants that did not retrieve any relevant documents.

An analysis of the distribution of query terms over the ranked query variants allows one
to assign a weight to each query term: If a term occurs mainly in query variants that have a
high average precision it should receive a high weight, whereas a term that occurs mainly
in query variants that have a low average precision should receive a low weight. Thus, the
weight of a query term depends on two factors: The average precisions of the query variants
in which the term occurs (its presence weight: w+(t)), and the average precisions of the
query variants in which the term does not occur (its absence weight: w−(t)). Presence and
absence weights are normalized by the sum of the average precisions of all query variants,
so the weights will range between 0 and 1.

Given a question q and all its query variants tsv(q), the presence weight of term t (w+(t))
is computed as:

w+(t) =

∑
q′∈tsv(q)∧t∈q′

avg prec(q′)

∑
q′∈tsv(q)

avg prec(q′)
(8)

Analogously, the absence weight of term t (w−(t)) is computed as:

w−(t) =

∑
q′∈tsv(q)∧t�q′

avg prec(q′)

∑
q′∈tsv(q)

avg prec(q′)
(9)

The presence and absence weights of a term t, can be combined into a single weight by
subtracting the absence weight from the presence weight, which we call the gain of term
t: gain(t) = w+(t) − w−(t). If a query term has a positive gain it should be included in the
query. If the gain is negative is should be excluded.

Let us return to question (5.a) and its query variants in Table 1. The presence and absence
weights, as well as the gain of each term, are shown in Table 3. The gains of the terms are in
line with the earlier observation that sulphur and dioxid are better query terms than chemic
and formula.

This approach of computing term weights assumes that terms occur independently of
each other. This assumption does not hold in practice, but it is commonly used in informa-
tion retrieval and allows us to simplify the computation of term weights.
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Table 4. List of features for question words

Feature Values

1. part-of-speech Fixed list of POS tags from the Penn Treebank tag set
2. location Boolean (is the word is part of a location name?)
3. question focus Boolean (is the word part of the question focus?)
4. abbreviation Boolean (is the word an abbreviation?)
5. superlative Boolean (does the question contain a superlative adjective?)
6. upper case Boolean (does the word start with an uppercase letter?)
7. question class A fixed list of question classes
8. classif. word Boolean (was the word used to classify the question?)
9. multpl. occurr. Boolean (does the word occur more than once in the question?)

10. person name A fixed set of values indicating what part of a person’s name the word
is, if applicable

11. quoted Boolean (does the word occur between quotation marks?)
12. honorific Boolean (is the word a honorific term (e.g., Dr.)?)
13. modified noun Boolean (is the word a noun that is preceded (modified) by another

noun?)
14. no. edges A natural number indicating the number of edges pointing to a word

in the dependency parse graph of the question
15. term ratio 1/m, where m is the number of unique terms in the question
16. hypernym Boolean (is the word a WordNet hypernym of another word in the

question?)
17. no. leaves The number n (n ≥ 0) of hyponyms of the word in the WordNet

hierarchy that do not have any further hyponyms themselves
18. relative idf A real value indicating the relative frequency of the word in the

document collection compared to the frequencies of the other words
in the question

5 Representing terms by feature sets

In the previous section, the computation of the term weights was based on the distribution
of the terms themselves over the query variants. This is problematic for two reasons. Firstly,
the same term can have a high gain in one query, and a low gain in another. Secondly, if
the learning algorithm is based on the surface terms themselves, it cannot assign weights
to terms that did not occur in the training data. The first problem is a direct consequence of
the term independence assumption. It could be solved by conditioning the weight of a term
on a number of terms that also occur in the question, but then data sparseness becomes a
serious issue.

One way to address both problems is to represent terms and their contexts in a more
abstract manner. Here, we use a set of features that represent certain characteristics of a
term and its role in a question. The list of features contains information about the term’s
part-of-speech, whether it semantically includes other terms in the question, the type of
question it occurs in, etc. As mentioned above, some of the features capture aspects in-
herent to a term, such as part-of-speech, while others capture contextual aspects, such as
semantic inclusion. Table 4 lists all 18 features used in our experiments.

We will now discuss all the features used here in more detail. Some of these features
can also be found elsewhere in the literature, see, e.g., (Paşca 2001). In particular, the
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specification of the features question focus, superlative, quoted, number of leaves, modified
noun, and person name is based on (Paşca 2001).

Part-of-Speech. The part-of-speech feature can take values such as NNP (proper name,
singular), JJS (superlative adjective), VBZ (verb in present tense, third person singular),
etc. These are the standard part-of-speech texts from the Penn Treebank (Santorini 1990).

Part-of-speech tagging is accomplished by using TreeTagger (Schmid 1994), a decision-
tree-based tagger. The general parameter setting of TreeTagger, which is based on a
newspaper training set, turned out to be inappropriate for tagging questions. This is due
to the difference in word order between interrogative and declarative sentences. In order
to improve the performance of TreeTagger for questions, we trained it on 700 questions,
328 of which were taken from the Penn Treebank corpus,3 and the remaining 482 were
questions from the TREC-9 data set. Whereas the Penn Treebank questions were already
manually part-of-speech tagged, we had to tag the questions from the TREC-9 data set
ourselves. Although we did not evaluate the increase in performance of the tagger, inspect-
ing randomly chosen questions indicated a clear improvement in tagging accuracy.

The actual values of the part-of-speech feature are a slight simplification of the Penn
Treebank tags. For example, we do not make a distinction between singular and plural
(proper) nouns, i.e., NNP and NNPS are mapped onto NNP, and NN and NNS are mapped
onto NN. Also, the different inflections of a verb are disregarded, and all verb forms are
represented by the single tag V.

Question Focus. The focus of a question is a phrase describing the ontological superclass
(i.e. hypernym) of the answer.4 For example, in question (10), the focus is country, in (11),
it is peninsula, and in (12), it is college.

(10) In what country did the game of croquet originate?
(11) What is a peninsula in the Philippines?
(12) What college did Magic Johnson attend?

The answer to question (10), which is France, is an instance of country, i.e., France is a
country; analogously for the other two examples.

Whether a word is part of the question focus has consequences for formulating the
query, as many documents containing an answer to the question do not make this instance
relation explicit. For instance, the fact that France is a country is considered to be common
knowledge and therefore seldomly stated explicitly in a document. Hence requiring a
document to contain words from the question focus can harm retrieval.

The question focus feature can take three values: 0, 0.5 and 1. If a word is not part of the
question focus, the feature is set to 0. If a word is part of the question focus and the semantic
head of a noun phrase, it is set to 1. For words that are part of the question focus, but are
not the semantic head of a noun phrase, the feature is set to 0.5. For instance in question
(13), the focus feature is set to 1 for the noun explorer, which is the semantic head of the

3 Distributed by the Linguistic Data Consortium: http://www.ldc.upenn.edu/.
4 Note that the term question focus in the way it has been used in the literature on question answering

does not necessarily coincide with its definition in the linguistic literature. In question answering,
the question focus is sometimes also referred to as answer type term.
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Fig. 1. Examples of Minipar dependency graphs for questions.

noun phrase Spanish explorer, and the focus feature is set to 0.5 for the modifying adjective
Spanish.

(13) What Spanish explorer discovered the Mississippi River?
(14) What mythical Scottish town appears for one day every 100 years?

For question (14), the focus feature is set to 0.5 for both modifying adjectives mythical and
Scottish. We do not make a distinction whether a modifying word immediately precedes
the head or whether there are more words between them. The semantic head is simply
identified as the rightmost word of the noun phrase in the question focus, cf. (Williams
1981).

In order to determine the focus of a question we used Minipar (Lin 1998), which is
a robust, full dependency parser and able to cover about 87 per cent of the dependency
relationships in the SUSANNE evaluation corpus (Sampson 1995) with about 89 per cent
precision, cf. (Lin and Pantel 2001). A directed arc in a dependency graph going from
node x to node y means that node x modifies node y. The arcs in the dependency graph
carry labels that indicate the type of modification. To determine the question focus, we use
only a small portion of the dependency graph of a question. In particular, we focus on the
outgoing arcs of nodes representing the wh-words what and which, because they modify the
question focus. In Figure 1, we show the dependency graphs that are generated by Minipar
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for question (10) and (11).5 The dependency graph shown in Figure 1(a), illustrates a trivial
situation, where the wh-word what modifies the noun country as a determiner. In question
(11), focus determination is slightly more complicated. In the corresponding dependency
graph, see Figure 1(b), the wh-word what modifies the noun peninsula as a subject. Note
that in the Minipar representations, the subj (subject) arcs refer to the logical subject, and
not to the syntactic subject. Two kind of modifier relations are used to identify the question
focus: det (determiner), and subj (subject).

Superlative. Despite our earlier comments, under certain circumstances, words from the
question focus can be relevant for query formulation. In particular, if the question contains
a superlative. In question (15), the focus island, and in question (16), the focus lake are
modified by a superlative adjective.

(15) What is the world’s second largest island?
(16) What is the deepest lake in America?

In these cases, the instance relation, viz. that New Guinea is an island and that Crater
is a lake, is likely to be expressed explicitly in the document containing an answer, e.g.,
. . . Crater Lake is America’s deepest lake. In order to be able to make this distinction the
feature superlative indicates whether the question contains a superlative adjective.

Detecting whether a question contains a superlative adjective relies on the output of the
part-of-speech tagger. If there is at least one word which is tagged as JJS, which is the
Penn Treebank tag for superlative adjective, the superlative is set to 1, and 0 otherwise.

Question Class. The decision to select a term for query formulation is to some extent also
based on the type of question. Question classes, or question types, specify the kind of
answer the question is asking for. Question types include categories such as date (when
did something happen?), location (where is something?), agent (who did something?), etc.
For example, consider questions (17) and (18).

(17) Who started the Protestant reformation?
(18) When did the Black Panther party start in California?

Both questions contain the term start, but question (17) is of type agent, and question (18)
is of type date. It turns out that including the term start is more important in formulating
the retrieval query for question (17), where the gain for start is 1.0, than for question (18),
where the gain for start is 0.094. This might be due to the fact that starting dates can be
expressed in several ways.

To identify the question class, often also referred to as the question target, pattern
matching is applied to assign to a question one of 33 classes. In total, a set of 102 patterns
is used to accomplish this. Some of the patterns used are shown in Table 5.

The patterns are applied in an ordered manner so that more specific patterns match first.
These patterns were generated manually by inspecting a sample of the TREC questions. Of
course, one could imagine several types of questions that are not necessarily well-captured
by these types, but since our approach is applied in the context of question answering as

5 The graphs were constructed using AT&T’s Graphviz graph displaying tool: http://www.
research.att.com/sw/tools/graphviz/.
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Table 5. Example patterns for question classification

Question target Example patterns

name /[Ww]hat( wa| i|\’)s the name/
pers-def /[Ww]ho( wa| i|\’)s [A-Z][a-z]+/
thing-def /[Ww]hat( wa| i|\’)s an? /
pers-ident /[Ww]ho( wa| i|\’)s the/
thing-ident /[Ww](hat|hich)( wa| i|\’)s the /
number /[Hh]ow (much|many) /
expand-abbr /stand(s)? for( what)?\s*?/
find-abbr /[Ww]hat( i|\’)s (the|an) (acronym|abbreviation) for
agent /[Ww]ho /, / by whom[\.\?]/
object /[Ww]hat (did|do|does) /
known-for /[Ww]hy .+ famous/ /[Ww]hat made .+ famous/
aka /[Ww]hat( i|\’)s (another|different) name /
name-instance /Name (a|one|some|an) /
location /[Ww]here(\’s)? /, / is near what /
date /[Ww]hen /, /[Ww](hat|hich) year /
reason /[Ww]hy /
what-np -
unknown -

defined in the TREC question answering campaign, we focus on those questions that are
typically present in the TREC data sets. Note that this pattern matching approach is rather
simple, but nevertheless quite effective for our purposes here, as the question class is just
used as one of the features for query formulation, and the goal of our approach is not
answer extraction, where accuracy of the question classifier is more important. For more
sophisticated approaches to question classification see (Harabagiu, Paşca and Maiorano
2000; Ittycheriah et al. 2001; Li and Roth 2006).

Multiple Occurrences. As mentioned above, if a word occurs in the question focus, includ-
ing it in the query may harm retrieval performance. For instance, the query for question
(19) should not contain the term state.

(19) Which U.S. state is the leading corn producer?
(20) What state is the geographic center of the lower 48 states?

On the other hand, if a word occurs in the question focus and also outside of it, excluding
that term from the query may harm the results. In question (20), the term state occurs
twice. Note, that although the second occurrence is the plural form of state, after mor-
phological normalization, such as stemming, both occurrences are mapped to the same
term. Whether a word occurs more than once is captured by the boolean feature multiple
occurrences.

Quoted. Words that occur between quotation marks require special consideration. Quoted
phrases often refer to titles of movies or theater plays, nicknames, etc. Many words that
do not bear much content, and therefore are not very helpful for retrieval, are critical for
retrieval if they occur in a quotation. For instance, in question (21), the words gone, with,
and the, are highly frequent terms.

(21) What is the name of the heroine in ‘Gone with the Wind’?

However, not selecting them for query formulation would only leave the word wind as
a description of the movie title, which is certainly insufficient. In order to distinguish
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between words that occur in a quotation and those that do not, the boolean feature quoted
is set to 1 if a word is quoted and 0 otherwise.

Number of Leaves. As discussed above, including words that appear in the question fo-
cus often harms retrieval. But the extent to which including question focus words harms
retrieval, also depends on the generality of the word. For instance, in question (22), the
question focus is person, which is a very general term, and including it in the query is
likely to harm retrieval.

(22) What person developed COBOL?
(23) What Spanish explorer discovered the Mississippi River?

In question (23), the term explorer is rather specific and it is likely that the answer docu-
ment makes the fact explicit that Hernando de Soto (the correct answer to the question), is
an explorer. Whereas it is rather unlikely that a document containing the answer to question
(22) explicitly states that Grace Hopper (the correct answer) is a person.

There are several ways to measure the generality of a term. Here, we use WordNet to
count the number of concepts that are hyponyms of the question focus and that do not
have any hyponyms themselves. A concept x is a hyponym of concept y, if x is a y. If
the question focus is ambiguous, i.e., it belongs to several concepts, we take the sum of
all hyponyms of all concepts the word belongs to. The feature no. leaves provides the
number of hyponyms. For instance, the term person occurs in three concepts in WordNet,
which in total have 5,765 leaves, whereas the term explorer occurs in one concept, which
has 3 leaves. One can conclude that the term person is much more general than the term
explorer, and hence less likely to occur explicitly in an answer document.

Term Ratio. A more general aspect of query formulation is the length of the original
question. If a question contains many words, leaving one out in formulating the query has
less of an impact on the effectiveness of the retrieval process than for questions that contain
only two or three terms. The feature term ratio expresses the length of the original
question (after removing general stop words), as its reciprocal: 1/m, where m is the number
of words in the question.

Classifying Word. Certain words are good indicators for classifying a question. For in-
stance, in question (24), the word abbreviation in combination with the word mean indic-
ates that the question is of type expand-abbreviation.

(24) What does the abbreviation WASP mean?
(25) What is the height of the tallest redwood?
(26) What province is Calgary located in?

Similarly, the word height in question (25) indicates that the question is of type height,
and the word located that question (26) is of type location. However, words that are good
indicators for question classification, are less frequently used in answers occurring in the
documents. For example, it is rather unlikely that the word located is used in a declarative
sentence that answers question (26).

Whether a word is a classifying word depends also on the question category of the
question at hand. If the question category is expand-abbr, the words stand, abbreviation,
and mean are classifying words, but if the question category is known-for, the words
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famous and made are classifying words, see Table 5. The classifying words are extracted
from the patterns that are used for question classification.

Location. The location feature indicates whether a word is part of a location name. For
many questions, it is essential to include words that are part of a location name in order to
find an answer. For instance, in question (27), the location words San, Antonio, and TX are
relevant terms as the question refers to the temperature of that particular location.

(27) What is the highest recorded temperature in San Antonio, TX?
(28) When was the Buckingham Palace built in London, England?

On the other hand, in question (28), the location words London and England seem to be
superfluous as it is relatively well-known that Buckingham Palace is in London, and it is
common knowledge that London is a city in England.

To recognize locations we use the CLR gazetteer6, which is a large list of locations,
including cities, counties, harbors, countries, etc., containing 162,853 entries in total.

Abbreviation. If the word is an abbreviation, the value of this feature is set to 1, and 0
otherwise. If a question asks for the definition of an abbreviation, such as question (29),
the abbreviated term obviously has to be included in the query.

(29) What does HTML stand for?
(30) When is Fashion week in NYC?
(31) What TV series did Pierce Brosnan play in?

This is to a lesser extent the case for questions that do not ask for the full form of an
abbreviation. In question (30), the word NYC, and in question (31) the word TV are abbrevi-
ations. Documents containing an answer do not necessarily have to contain the abbreviated
word—in contrast to answer documents for question (29)—but they might as well contain
the full form, i.e., New York City, and television, respectively.

Abbreviations are recognized by applying simple pattern matching. If a word consists
of a series of capitalized letters, where each might be followed by a period, or a series
of letters, where each is followed by a period, or occurs in a list of known abbreviations,
the word is classified as an abbreviation. Maintaining a list of common abbreviations is
necessary to recognize words such as mph as an abbreviation.

Upper Case. Words starting with a capital letter are normally part of a proper name, even
when the word itself is not a noun.

(32) Who was Woodrow Wilson’s First Lady?
(33) What group sang the song ”Happy Together”?

In question (32), the adjective First, is part of the proper name First Lady, and in question
(33), the adjective Happy and the adverb Together are part of the proper name Happy
Together. Proper names are particularly important query terms and for recognizing them
as such, it is not sufficient to rely on part-of-speech tags. Whether the fact that a part-of-
speech tagger (TreeTagger in our case) tags the word First as adjective and not as proper

6 Available from ftp://crl.nmsu.edu/CLR/lexica/gazetteer. Last accessed on February 4,
2008.
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name has to be considered a mistake or not is difficult to say. From a syntactic point of
view, First is clearly an adjective, and it is by convention that it is used a a proper noun in
this specific context. Using the upper case feature in addition to part-of-speech tags allows
us to recognize these cases.

Modified Noun. The information content of modified nouns tends to be higher than the
content of single nouns, because the modifier imposes additional restrictions. In question
(34), the noun performer is modified by the noun child, and in question (35) the noun range
is modified by the nouns blood and sugar.

(34) Who holds the record as the highest paid child performer?
(35) What is the normal blood sugar range for people?

A noun is marked as modified by inspecting the part-of-speech tagged question. If a
noun is preceded by an adjective, noun, or possessive, the modified noun feature is set
to yes, and otherwise it is set to no. If the word is not tagged as a noun, the feature is set to
na (not applicable). (36.b) is the part-of-speech tagged output of TreeTaggerwhen applied
to question (36.a). Here, blood, sugar, and range are all preceded by either an adjective or
a noun. Hence, the modified noun feature is set to yes for the three words. people is
preceded by a preposition, and therefore the modified noun feature is set to no. For all
other words in the question, the feature is set to na.

(36) a. What is the normal blood sugar range for people?
b. What is the normal blood sugar range for people ?

WRB VBZ DT JJ NN NN NN IN NN SENT

Note that our definition of modification is rather simple and does not take any internal
phrase structure into account. We pursue a simple linear approach to modification, which
seems sufficient as we are not interested in the exact phrase that modifies a noun, but simply
have to decide whether a noun is modified or not. This also allows us to circumvent the
problem of phrase structure ambiguity.

Person Name. Words that are part of a person name are a special instance of words that are
part of a proper name. Person names deserve special attention, because they can be further
subdivided into first, middle, and last names.

(37) What is Francis Scott Key best known for?
(38) When did George W. Bush get elected as the governor of Texas?

In question (37), Francis is the first name, Scott, the middle name, and Key, the last name.
Often, the middle name is abbreviated by using the first letter only, as in question (38),
where the W. stands for Walker. The distinction between the different parts is important,
because in many documents, the full name of a person is only used the first time the name
occurs, and then later on that person is referred to by using the last name only. Hence, last
names are more important for finding an answer.



Machine learning for query formulation in question answering 441

town:N

fin:C

whnappear:V

subj

:U
What mythical Scottish town appears for one day every 100

years?

undef

i

for:Prep

mod

One:U

Day:N

lex-mod

pcomp-n_SPEC

100:U

years:N

lex-mod_NUM

undef_SPEC

What:Det

det

mythical:A

mod

Scottish:N

nn

Fig. 2. Minipar dependency graphs for example question.

To identify person names, we use part of the U.S. Census resource,7 which contains a
list of first and last names. The list of first names contains 4,275 female and 1,219 male
first names, and 101,865 last names.

Honorific. Honorific expressions include words such as Mr., Mrs., Dr., etc. These terms do
not bear much information and are therefore not essential for formulating a query.

(39) Where did Dr. King give his speech in Washington?

In question (39), insisting on the presence of the honorific word Dr. in a potential answer
document is too restrictive, as many documents refer to Martin Luther King without using
an honorific expression.

Number of incoming edges. The number of incoming edges refers to the dependency parse
graph of the question which is generated by Minipar. If a word has a larger number of
incoming edges, several words in the question are in a modifier or argument relationship
with this word, and therefore it is more likely to play a central role in the question. Figure 2
shows the dependency graph for question (40).

(40) What mythical Scottish town appears for one day every 100 years?

7 Available from http://www.census.gov/genealogy/names/.
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The verb appear has two incoming edges, and the noun town has three. Nodes in the
graph which are not associated with a word in the question, such as the fin node, are not
considered.

Hypernym. Sometimes questions contain words that explicitly give the type of other words
in the question. For instance, in question (41), croquet is classified by the word game.

(41) In what country did the game of croquet originate?
(42) What is the name of the volcano that destroyed the ancient city of Pompeii?

Similarly, in question (42), the word city makes explicit that Pompeii is a city. The word
game is a hypernym of croquet, and the word city is a hypernym of Pompeii. Often, this
kind of information is common knowledge and not explicitly mentioned in documents
containing an answer. Hence, including these words in the queries might harm retrieval
effectiveness. This is similar to the situation of words that appear in the question focus, as
discussed above.

We use WordNet to find words or phrases that are hypernyms of other words or phrases
in the question. Although WordNet does not contain entries for all question words—in
particular most named entities are missing—the overall coverage is reasonable and stable
across the test sets, covering on average 62.1 per cent (TREC-9), 67.7 per cent (TREC-10),
and 61.6 per cent (TREC-11) of all nonstop words in the questions.

Relative idf score. Another indicator of the importance of a term is its frequency in the
document collection. It is common to measure importance as the inverted document fre-
quency (idf). Here, we are more interested in the relative importance of a term with re-
spect to the other terms in the question. The relative idf score of term t in question q is
defined as

ridf(t, q) =
log2(N/df t)∑

t′∈q
log2(N/df ′t)

where N is the number of documents in the collection, and df t is the number of documents
in which term t occurs.

At this point, after having discussed the individual features in some detail, it might
be helpful to consider some example questions. Table 6 provides the complete feature
instantiations for a number of questions.8

When comparing the feature representations of the words, a number of things can be
noticed. For instance, three of the questions have words in the question focus: country
in question 1, year in question 3, and first and satellite in question 4. Although all four
terms occur in the focus of the respective question, there is a clear difference with respect
to their generality. The word country has 300 leaves as hyponyms, the word year has
21 leaves as hyponyms, first has 7 and satellite has 20 leaves as hyponyms. Therefore,
country is less likely to be helpful for retrieving answer documents than, for instance,
satellite, as motivated above. On the other hand, year has only 7 leaves as hyponyms,

8 In Table 6, some of the question classes had to be shortened to make the table fit on the page. The
class location was shortened to locat., thing-ident to th-id, and date-of-death to dod.
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Table 6. Example questions and their feature instantiations
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In what country did the game of croquet originate? (question 1)

countri NN 1 0 locat. 0 0 300 0.25 1 0 0 0 no no 0 1 0 0.07
game NN 0 0 locat. 0 0 195 0.25 0 0 0 0 no no 0 2 1 0.13
croquet NN 0 0 locat. 0 0 0 0.25 0 0 0 0 no no 0 0 0 0.58
origin VB 0 0 locat. 0 0 0 0.25 0 0 0 0 na na 0 1 0 0.20

When did president Herbert Hoover die? (question 2)

presid NN 0 0 dod 0 0 2 0.25 0 0 0 0 no no 0 1 0 0.08
herbert NNP 0 0 dod 0 0 0 0.25 0 0 0 1 no first 0 0 0 0.34
hoover NNP 0 0 dod 0 0 0 0.25 0 0 0 1 no last 0 1 0 0.42
die VB 0 0 dod 0 0 4 0.25 1 0 0 0 na na 0 1 0 0.16

What year was the movie ‘Ole Yeller made? (question 3)

year NN 1 0 date 0 0 21 0.20 1 0 0 0 no no 0 1 0 0.03
movi NN 0 0 date 0 0 15 0.20 0 0 0 0 no no 0 0 0 0.16
ol NNP 0 0 date 0 1 0 0.20 0 0 0 1 no no 0 0 0 0.29
yeller NNP 0 0 date 0 1 0 0.20 0 0 0 1 no no 0 4 0 0.48
make V 0 0 date 0 0 2 0.20 0 0 0 0 na na 0 0 0 0.04

What was the first satellite in space? (question 4)

first JJS 1 1 th-id 0 0 7 0.33 0 0 0 0 na na 0 0 0 0.12
satellit NN 1 1 th-id 0 0 20 0.33 0 0 0 0 yes no 0 4 0 0.49
space NN 0 1 th-id 0 0 103 0.33 0 0 0 0 no no 0 0 0 0.40

indicating that it is a rather specific term, which is certainly not the case. This is due to
the fact that WordNet does not list all possible years as hyponyms of the concept year.
One way to distinguish between truly specific focus words such as satellite and words
such as year is the feature classifying word, which is set to 1 for year, and 0 for
satellite.

In question 2, Herbert Hoover was recognized as a name and for Herbert the person
name feature was set to first and for Hoover it was set to last. If a noun was not
recognized as part of a name the feature is set to no, and for part-of-speech tags other
than nouns, the feature is set to na (not applicable).
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6 Learning term weights

The previous section discussed the individual features that are used to represent words in a
question. In this section we discuss how we use these features to predict the importance of
a term for query formulation. Instead of using some heuristics for predicting the query term
importance we apply machine learning techniques to assign a weight to each term in the
question, where the actual query that is used for retrieval will include these weights. The
input for the learning algorithm is the set of feature vectors as described in the previous
section, and the classes are the terms’ gains as described in Section 4.

For the purpose of learning term weights, the machine learning algorithm should learn
to predict the degree of the query term’s usefulness for query formulation. Decision trees,
naive Bayes, and linear regression, all allow for interval classification and generate trans-
parent classification rules. Naive Bayes classification is known to be well-performing for
nominal classification, see (Domingos and Pazzani 1997), but performs badly for interval
classification (Frank et al. 2000).

In general, decision trees partition the training data into a hierarchical structure. The
hierarchical structure is based on the information gains of each attribute or feature, where
attributes with higher information gains are closer to the root of the tree. Decision trees are
commonly used for classification and they are general enough to be applied to numerous
natural language processing tasks, such as part-of-speech tagging (Schmid 1994), parsing
(Haruno, Shirai and Ooyama 1998), and word-sense disambiguation (Brown et al. 1991).
The best-known algorithm for decision tree learning is Quinlan’s C4.5 (Quinlan 1993), but
C4.5 cannot deal with cases where classes are not labels, but real numbers. M5 (Quinlan
1992), on the other hand, which is an extension of C4.5, does allow for this type of
continuous classification, also referred to as regression.

The M5 algorithm builds model trees combining conventional decision tree learning
with the possibility of linear regression models at the leaves of the tree. The resulting
representation is transparent because the decision structure is clear and the regression
models are normally easily interpretable. The idea of model trees is largely based on
the concept of regression trees. The advantage of M5 is that model trees are generally
much smaller than regression trees and have proved to be more accurate in a number of
tasks; see (Quinlan 1992). The learning algorithm used here, is M5′ (Wang and Witten
1997), which is a reconstruction of Quinlan’s M5 algorithm. M5′ is part of the Weka ML
package (Witten and Frank 2005). Our specific choice of M5′ is mainly motivated by the
comparison of Frank et al. (2000) who have shown experimentally that M5′ outperforms
Naive Bayes, linear regression, and locally weighted regression, on a large number of
regression tasks.

Figure 3 shows parts of a model tree that has been generated by M5′. The highest
branching of the tree in Figure 3, checks whether the word at hand is a first name, last
name or other noun, i.e., personname = first,no,last <= 0.5. If not, further ana-
lysis descends down the other branch. At each leaf node is a linear regression model, e.g.,
LM1 in Figure 3. LM1 confirms some of the intuitions for query term selection as discussed
above. If the word occurs in the question focus, this has a negative impact on the term
weight (-0.00816focus). Also, if the question does not contain a superlative adjective,
the query term weight is lowered (-0.00135superlative=0). Words that are not used to
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persname=first,no,last <= 0.5 :
| relidf <= 0.332 :
| | noleaves <= 2.5 :
| | | tag=JJ,LS,CD,JJS,NN,PRP,
| | | F,NNP,NN,NNP <= 0.5 : LM1
...
LM1: class = -1.12 - 0.00816focus

- 0.00135superlative=0
...
+ 0.0084usedtoclassify=0
+ 1.03abbreviation=0
+ 0.03uppercase=1
+ 0.0181persname=na,first,no,last
+ 0.00178personname=no,last
+ 0.00131personname=last
+ 0.00218hypernym=0
+ 0.0112relidf
...

Fig. 3. Excerpt of a learned model tree.

classify the question receive a higher term weight (+0.0084usedtoclassify=0), and the
same applies to question words that are not abbreviations (+1.03abbreviation=0).

7 Results

In the previous sections we discussed which features are extracted to represent terms and
how these features are used to compute a term’s importance in the context of the question in
which the term occurs. In this section we discuss the experimental results when integrating
the term importance information into a standard retrieval approach.

7.1 Experimental results

To integrate the learned term weights, as described above, the computation of the retrieval
status value (RSV) has to be adapted appropriately. We use the learned query term weights
in combination with the original retrieval status value that resulted from computing the
similarity between a query q and a document d according to the Lnu.ltc weighting scheme.
For the details of the Lnu.ltc scheme, the reader is referred to (Buckley, Singhal and Mitra
1995; Singhal et al. 1996).

RSV(q, d) =
∑

i∈q∩d

1 + log(freqi,d)

1 + log(avg j∈dfreq j,d)
·

freqi,q

max
j∈q

freq j,q
· log

(
N
ni

)

((1 − sl) · pv + sl · uwd) ·

√√√√√∑
i∈q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ freqi,q

max
j∈q

freq j,q
· log

(
N
ni

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

For our experiments we carried out a simple grid search to determine the best value for
the slope resulting in a value of 0.2, which is in line with commonly reported values for the
slope. pv (pivot) was set to the average number of unique words occurring in the collection.
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Table 7. Comparison of the f@n scores of learned-weights retrieval (LWR) runs to the
baseline runs. As these are error rates, lower values are better

TREC-9 TREC-10 TREC-11

f@n Base LWR Red. Base LWR Red. Base LWR Red.

5 0.300 0.273 (−9.0%)� 0.351 0.346 (−1.4%) 0.477 0.453 (−5.0%)�

10 0.215 0.194 (−9.8%)� 0.266 0.270 (+1.5%) 0.374 0.363 (−2.9%)
20 0.155 0.137 (−11.6%) 0.199 0.196 (−1.5%) 0.295 0.268 (−9.2%)�

50 0.086 0.092 (+7.3%) 0.125 0.141 (+12.8%) 0.205 0.185 (−9.6%)

uwd refers to the number of unique words in document d. The formula for computing the
RSV above is a standard approach in document retrieval. The slope and pivot parameters
are used to counterbalance the tendency of most cosine-based retrieval measures to prefer
shorter documents. The RSV measure above is used as our baseline.

In order to integrate the term importance weights, as defined in Section 5 and 6, we
changed the Lnu.ltc similarity measure to:

RSVL(q, d) =
∑

i∈q∩d

w(rep(t, q)) ·
1 + log(freqi,d)

1 + log(avg j∈dfreq j,d)
·

freqi,q

max
j∈q

freq j,q
· log

(
N
ni

)

((1 − sl) · pv + sl · uwd) ·

√√√√√∑
i∈q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝w(rep(t, q)) ·
freqi,q

max
j∈q

freq j,q
· log

(
N
ni

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

Here, rep(t, q) is the feature representation of term t in query q, as described in Section 5,
and w(rep(t, q)) is the learned weight, which results from applying the M5′ model tree to
t’s feature representation, as described in Section 6.

As the term weights are estimated by using parts of the TREC collection, we used cross-
validation to clearly distinguish between training data and test data. For the evaluation three
different model trees were generated, one for each of the TREC data sets. The model tree
for assigning weights to terms in the TREC-9 test set was trained on feature representations
of words from TREC-10 and TREC-11 (2,854 instances), the model tree for the TREC-
10 test set was trained on feature representations from TREC-9 and TREC-11 (3,167
instances), and the model tree for the TREC-11 test set used feature representations from
TREC-9 and TREC-10 (2,769 instances).

First, we consider the performance with respect to the failure-at-n (f@n) measure.
Table 7 shows the results of using learned query terms weights in contrast to the Lnu.ltc
baseline. The improvements vary between the different test sets. For nine of the twelve
runs LWR yields a reduction in f@n compared to the baseline. In particular for lower
and medium cut-offs (n ≤ 20) the improvements are consistent, with the exception of
TREC-10 for f@10. At higher cut-off values (n = 50) only the run for TREC-11 led to an
improvement.

It is notable that the relative reductions in error rate for the TREC-10 test set are substan-
tially lower. One reason for this is the large number of definition questions it TREC-10.
While the TREC-9 data sets contains 9 per cent definition questions and TREC-11 contain
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10 per cent, TREC-10 contains 25 per cent of definition questions. As definition questions
contain more technical terms, one could assume that this could pose a problem for some
of the features, such as the hypernym feature and the number of leaves feature which both
rely on WordNet, as they often contain technical terms that are not found in WordNet.
When looking at the WordNet coverage for definition questions, it turns out that WordNet
coverage is actually higher (75.0 per cent on average) for definition questions than for the
entire TREC-10 data set (67.7 per cent on average).

One other significant difference between the TREC-10 on the one hand and the TREC-
9 and TREC-11 sets on the other hand, is the average length of the questions. Even after
discarding definition questions, which are typically rather short, TREC-9 questions contain
on average 3.2 content words, while this is 3.6 for TREC-10 and 3.8 for TREC-11.

One would expect term weights to have more impact for longer questions than for shorter
questions. To quantify this we computed the correlation between the improvements and the
question length using Kendall’s tau, which resulted in a modest positive correlation of 0.41.

While our term weighting approach leads to improvements, one might be able to get
similar improvements with other retrieval schemes that have been applied in the context of
question answering. Passage-based retrieval is commonly used within question answering
as it emphasizes the tendency of question words to occur within some proximity, see, e.g.,
(Roberts and Gaizauskas 2004). To this end we compare our results to two passage retrieval
approaches. The first approach splits all documents in the collection into passages of fixed
length where passages within a document have an overlap ratio of 50 per cent. The second
passage-based retrieval approach models Approach 3 of Roberts and Gaizauskas (2004),
where in the first stage document retrieval is carried out and in a second stage the top
5,000 documents are split into passages and passage-based retrieval is carried out on the
subcollection of top documents. For both approaches the passage length is set to 150 words.
While we have experimented with several passage lengths, setting the length to 150 words
yielded the most stable results.

Table 8 shows the results for both sets of passage retrieval runs. Our approach clearly
outperforms both types of passage-based retrieval. Indeed, the improvements are substan-
tially larger than compared to the baseline. Although it may seem surprising that both
passage-based approaches perform worse than the baseline, this is consistent with (Roberts
and Gaizauskas 2004).

The approaches discussed so far only used words from the original question to formulate
queries. It has been shown for ad hoc retrieval that it can be helpful to extend the query
with words occurring in documents that can be assumed to be relevant. This approach is
known as Blind-Relevance Feedback, where terms from the top-n ranked (n typically being
5 or 10) documents from an initial retrieval pass are added to the query to perform a second
retrieval pass, see (Mitra, Singhal and Buckley 1998) for more details. Table 9 shows the
results comparing the learned-weights approach to blind relevance feedback in the context
of question answering. LWR clearly outperforms blind relevance feedback. This is also in
line with earlier findings, see, e.g. (Monz 2003). The main reason for this is that while the
terms that are used to expand the query are topical they are not specific enough to the exact
question.

Finally, we compare the performance between LWR and the baseline with respect to
mean average precision and the results are displayed in Table 10. Compared to the state-of-
the-art Lnu.ltc baseline, the improvements are clearly statistically significant. This shows
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Table 8. Comparison of the f@n scores for learned-weight retrieval (LWR) to
passage-based retrieval (Pass) and document-passage retrieval (Pass-3)

TREC-9 TREC-10 TREC-11

f@n Pass LWR Red. Pass LWR Red. Pass LWR Red.

5 0.325 0.273 (−16.0%)� 0.390 0.346 (−11.3%)� 0.527 0.453 (−14.0%)�

10 0.235 0.194 (−17.4%)� 0.327 0.270 (−17.4%)� 0.410 0.363 (−11.5%)�

20 0.170 0.137 (−19.5%)� 0.219 0.196 (−10.5%)� 0.304 0.268 (−11.8%)�

50 0.088 0.092 (+4.5%) 0.135 0.141 (+4.4%) 0.219 0.185 (−15.5%)�

f@n Pass-3 LWR Red. Pass-3 LWR Red. Pass-3 LWR Red.

5 0.329 0.273 (−17.0%)� 0.393 0.346 (−11.9%)� 0.532 0.453 (−14.8%)�

10 0.227 0.194 (−14.5%)� 0.285 0.270 (−5.3%) 0.404 0.363 (−10.1%)�

20 0.166 0.137 (−17.5%)� 0.205 0.196 (−4.4%) 0.312 0.268 (−14.1%)�

50 0.087 0.092 (+5.7%) 0.127 0.125 (−1.6%) 0.212 0.185 (−12.7%)�

Table 9. Comparison of the f@n scores for learned weight retrieval (LWR) to blind
relevance feedback (BRF)

TREC-9 TREC-10 TREC-11

f@n BRF LWR Red. BRF LWR Red. BRF LWR Red.

5 0.388 0.273 (−29.6%)� 0.472 0.346 (−26.7%)� 0.600 0.453 (−24.5%)�

10 0.288 0.194 (−32.6%)� 0.398 0.270 (−32.2%)� 0.508 0.363 (−28.5%)�

20 0.217 0.137 (−36.9%)� 0.294 0.196 (−33.3%)� 0.418 0.268 (−35.9%)�

50 0.140 0.092 (−34.3%)� 0.181 0.125 (−30.9%)� 0.293 0.185 (−36.9%)�

Table 10. Comparison of mean average precisions (MAP) of learned-weights retrieval
(LWR) to the baseline

TREC-9 TREC-10 TREC-11

Base LWR Impr Base LWR Impr Base LWR Impr

0.280 0.328 (+17.1%)� 0.279 0.296 (+6.1%)� 0.214 0.242 (+13.1%)�

that using query term weights tends to rank relevant documents higher than the baseline
and that it tends to find more documents containing an answer, which is not measured by
f@n.

7.2 Importance of individual features

Having evaluated the effectiveness of using the model tree to predict term weights for
retrieval purposes, we discuss the accuracy of the learned model tree itself. Table 11



Machine learning for query formulation in question answering 449

Table 11. Accuracy of the model tree learning algorithm

Evaluation measure Score

Correlation coefficient 0.5018
Mean absolute error 0.3783
Relative absolute error 82.1%

provides some of the figures that are generated by the Weka machine learning package
for the model tree learning algorithm. Evaluation has been done on the training data using
ten-fold cross validation. In n-fold cross validation, the training data is arbitrarily split into
n partitions. The model tree learning algorithm is applied n times to n− 1 partitions, where
each time a different partition is held out for evaluating. Overall evaluation scores are
obtained by averaging over the n individual evaluation scores. The correlation coefficient
indicates the degree to which the predicted value and the original values, as provided by the
test data, correlate. A value of 1 (−1) indicates perfect (inverse) correlation, and a value
of 0 indicates no correlation at all. Here, a correlation coefficient of 0.5 means that the
predicted and original values are weakly correlated. The mean absolute error is the mean
absolute difference between the predicted value (term weight) and the original value. The
relative absolute error is the mean relative difference between the predicted value and the
original value expressed in percents. A relative absolute error of 100 per cent corresponds
to the error that would have been obtained by always taking the mean value of all training
instances for prediction. In our experiments, the relative absolute error is 82.1 per cent,
which is rather high, but still substantially better than choosing the mean training value for
prediction.

In addition to evaluating the accuracy of the whole model tree, it is also interesting to
estimate the importance of a single feature or attribute for learning the query term weight.
This can be done by computing the attribute’s information gain, cf. (Breimann et al. 1984).
Information gain measures the reduction in uncertainty, where the degree of uncertainty
is measured as the entropy. The information gain of attribute A with respect to class C is
defined as:

InfoGain(A,C) = H(C) − H(C|A)(43)

= −
∑
c∈C

p(c)log2(p(c))

−
⎛⎜⎜⎜⎜⎜⎝−∑

c∈C

∑
a∈A

p(c, a)log2(p(c|a))

⎞⎟⎟⎟⎟⎟⎠
Note that the information gain computes the importance of an attribute independently of
other attributes.

The problem with using information gain in the current context is that a number of attrib-
utes and the learned class, the query term weight, have to be discretized. Discretization is
a nontrivial process in itself, and the way discretization is carried out has an impact on the
estimation of the information gain. Hence, we used regression relief, which is a measure
for estimating the importance of an attribute for learning the query term weight, and which
can easily deal with continuous attributes and classes.
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Table 12. RReliefF estimates of features

Rank Feature RReliefF value

1 abbreviation 0.006088
2 qtype 0.004000
3 noleaves 0.003909
4 relidf 0.003655
5 tag 0.003272
6 focus 0.003058
7 wordratio 0.002637
8 hypernym 0.001847
9 superlative 0.001492

10 twice 0.000966
11 quotes 0.000502
12 honorific 0.000229
13 usedtoclassify 0.000163
14 uppercase 0.000109
15 noincomingedges 0.000006
16 modifiednoun −0.000030
17 location −0.000454
18 personname −0.001028

(Robnik-Šikonja and Kononenko 1997; Robnik-Šikonja and Kononenko 2003) intro-
duce the regression relief algorithm (RReliefF) to estimate the weight of an attribute. The
key idea of the RReliefF algorithm is to estimate the quality of an attribute according to
how well it discriminates between instances (feature vectors of query terms) that are near
to each other. For this purpose, an instance R is randomly selected. Then, the k nearest
instances, with respect to the class value, are selected, and the difference between the value
of an attribute A of R and the value of the same attribute for one of the k instances is
compared with respect to the difference of their class values. This process is repeated for
a number of instances, potentially all, which finally leads to a weight for each attribute.
The weight can range between −1 and 1. The full details of the RReliefF algorithm can be
found in (Robnik-Šikonja and Kononenko 1997; Robnik-Šikonja and Kononenko 2003).

Table 12 shows the RReliefF estimates for the 18 attributes or features that were used
to learn query term weights. The classes (the term weights themselves) were determined
by applying the model tree that was generated from the TREC-9, TREC-10 and TREC-11
datasets. For computing the RReliefF estimates, we used the Weka system, which provides
and implementation of the RReliefF algorithm.

The ranking of the features reveals a number of interesting aspects. First, the
personname feature is ranked lowest according to the RReliefF estimation, but it is the
highest branching feature in the model tree in Figure 3. One explanation for this discrep-
ancy is the fact that personname is apparently too general a feature to predict query term
weights by itself. The abbreviation feature receives the highest RReliefF estimate, al-
though it does not appear in the model tree in Figure 3. The high rank of the abbreviation
feature is probably due to the fact that it occurs in all of the linear models LM1–LM17 with
a relatively high regression coefficient, at the leaves of the model tree. The same holds for
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the qtype feature. The relidf and noleaves features, which are also ranked high by
RReliefF, also occur high in the model tree, but are apparently more helpful for predicting
the term weights than the personname feature, because they also occur in all linear models
with coefficients that are higher than the coefficients of the personname feature.

Unfortunately, it is hard to distillate an explanation for each of the features’ RReliefF es-
timate from the model tree. Nevertheless the RReliefF estimate does provide some insights
into the importance of a feature independent of other features.

8 Conclusions

In this paper we investigated the importance of term weighting for information retrieval in
the context of question answering. We have seen that optimal query weighting can have a
substantial impact on retrieval quality, reducing the failure rates of the retrieval component
significantly.

In order to learn query term weights, we considered all possible ways of selecting terms
from the original question for query formulation and used the performance results of each
possible formulation in order to determine individual query term weights.

To overcome data sparseness issues, query terms are represented as sets of features on
which the M5′ model tree learning algorithm is trained. The resulting model trees confirm
some of the heuristics and intuitions for keyword selection than can be found in other
approaches; see, e.g., (Paşca 2001).

Integrating the learned query term weights into a standard retrieval approach reduces
the failure rate substantially in most cases. In addition, our proposed term weight learning
approach yields significantly better results than passage-based retrieval approaches com-
monly used for document retrieval in the context of question answering. Our approach
also outperforms the baseline with respect to mean average precision. Hence question
answering systems that are more sensitive to the rank position of a retrieved document
can benefit from using our approach.

In some cases the issue of whether a term is helpful for retrieving answer documents
simply depends on idiosyncrasies of the documents that contain an answer, but our training
sets were fairly large and varied in order to generalize properly.
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