
Preference Representation in Combinatorial Domains Multiagent Systems 2006

Multiagent Systems: Spring 2006

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss (ulle@illc.uva.nl) 1

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Preference Representation in Combinatorial Domains

The collective choices made in a MAS will be driven by the interests of

individual agents. Agents must be able to communicate preferences

(directly through full revelation, or indirectly via “moves” in a game).

• So far, we have treated this topic only very abstractly , by saying

that agents “have” a utility function or “report” a valuation.

• In combinatorial domains, preference representation is not trivial:

– for instance, negotiation over n goods requires expressing

preferences over 2n bundles

– also: multi-criteria decision making; voting for assemblies; . . .

So far, we have ignored this computational problem in the course

(as is common practice in the economics literature).

• In this lecture, we are going to review and compare different

preference representation languages.

Ulle Endriss (ulle@illc.uva.nl) 2

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Plan for Today

• General requirements on preference representation languages

• Distinguish cardinal and ordinal preference structures

• Different classes of utility functions (cardinal preferences):

monotonic, dichotomous, modular, concave utilities . . .

• Review of languages for representing utility functions:

explicit form, k-additive form, weighted goals, . . .

• Discussion of properties of different representation languages:

expressive power and comparative succinctness

• Review of languages for ordinal preference representation:

prioritised goals and ceteris paribus preferences

Ulle Endriss (ulle@illc.uva.nl) 3

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Preference Representation Languages

The following questions should be addressed when you investigate a

preference representation language:

• Cognitive relevance: How close is a given language to the way in

which humans would express their preferences?

• Elicitation: How difficult is it to elicit the preferences of an agent

so as to represent them in the chosen language?

• Expressive power : Can the chosen language encode all the

preference structures we are interested in?

• Succinctness: Is the representation of (typical) preference

structures succinct? Is one language more succinct than the other?

• Complexity : What is the computational complexity of related

decision problems, such as comparing two alternatives?

We are going to concentrate on expressive power and succinctness.

Ulle Endriss (ulle@illc.uva.nl) 4

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Cardinal and Ordinal Preferences

A preference structure represents an agent’s preferences over a set of

alternatives X . There are different types of preference structures:

• A cardinal preference structure is a (utility or valuation) function

u : X → Val , where Val is usually a set of numerical values such

as N or R.

• An ordinal preference structure is a binary relation � over the set

of alternatives, that is reflexive and transitive (and connected).

Note that we shall assume that X is finite.

Ulle Endriss (ulle@illc.uva.nl) 5

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Some Observations

• Intrapersonal comparison: ordinal and cardinal preferences allow

for comparing the satisfaction of an agent for different alternatives

• Interpersonal comparison: ordinal preferences don’t allow for

interpersonal comparison (“Ann likes x more than Bob likes y”)

• Preference intensity : ordinal preferences cannot express preference

intensity; cardinal preferences can (subject to Val being numerical)

• Representability : a connected ordinal preference relation � is

representable by a utility function u: x � y iff u(x) ≤ u(y)

• Cognitive relevance: hard to make general statements, but at least

ordinal preferences don’t require reasoning with numerical utilities

• Explicit representation: the explicit representation of cardinal and

ordinal preferences have space complexity O(|X |) and O(|X |2),

respectively (why?)

Ulle Endriss (ulle@illc.uva.nl) 6

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Preferences in Resource Allocation Scenarios

Let R be a finite set of indivisible resources (goods) with |R| = n.

Assume there are no externalities: agent preferences only depend on

their assigned bundle (not on the allocation as a whole or on any other

outside factors) ; need to model preference structures over X = 2R

Hence, the explicit representation has exponential space complexity.

Possible ways out:

• only consider restricted classes of preference structures, which

may allow for a more concise representation; and/or

• consider (and compare) different representation languages.

We start with the case of utility functions . . .

Ulle Endriss (ulle@illc.uva.nl) 7

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Classes of Utility Functions

Now a utility function is a mapping u : 2R → R.

• u is normalised iff u({ }) = 0

• u is non-negative iff u(X) ≥ 0

• u is monotonic iff u(X) ≤ u(Y) whenever X ⊆ Y

• u is dichotomous iff u(X) = 0 or u(X) = 1

• u is modular iff u(X ∪ Y) = u(X) + u(Y) − u(X ∩ Y)

• u is additive iff u(X) =
∑

x∈X

u({x})

Important: for the above definitions, the respective (in)equations are

understood to hold for all bundles X, Y ⊆ R.

I What is the connection between modular and additive utilities?

Ulle Endriss (ulle@illc.uva.nl) 8

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Modular and Additive Utilities

Modularity and additivity are really just two different names for the

same thing (well, almost):

Proposition 1 A utility function is additive iff it is both modular and

normalised.

Proof: “⇒”: obvious X

“⇐”: Let X ⊆ R, x ∈ X.

From modularity, we get u(X) = u(X\{x}) + u({x}) − u({ }).

As u is normalised, we obtain u(X) = u(X\{x}) + u({x}).

If we iterate this step |X| times, we get u(X) =
∑

x∈X

u({x}). 2

Ulle Endriss (ulle@illc.uva.nl) 9

Preference Representation in Combinatorial Domains Multiagent Systems 2006

More Classes of Utility Functions

A few more commonly used classes of utility functions:

• u is submodular iff u(X ∪ Y) ≤ u(X) + u(Y) − u(X ∩ Y)

• u is supermodular iff u(X ∪ Y) ≥ u(X) + u(Y) − u(X ∩ Y)

• u is concave iff u(X ∪ Y) − u(Y) ≤ u(X ∪ Z) − u(Z) for Y ⊇ Z

– Intuition: marginal utility (of obtaining X) decreases as we

move to a better starting position (namely from Z to Y)

• u is convex iff u(X ∪ Y) − u(Y) ≥ u(X ∪ Z) − u(Z) for Y ⊇ Z

Note: sub(super)modular functions are also called sub(super)additive;

different authors may or may not assume functions to be normalised.

Ulle Endriss (ulle@illc.uva.nl) 10

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Observations

The following relationships amongst some of these classes of utility

functions are easily checked:

• submodular ∩ supermodular = modular

• u submodular iff −u supermodular

• u concave iff −u convex

• concave ⊂ submodular (Proof: set Z = X ∩ Y)

• convex ⊂ supermodular

Ulle Endriss (ulle@illc.uva.nl) 11

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Explicit Representation

The explicit form of representing a utility function u consists of a table

listing for every bundle X ⊆ R the utility u(X). By convention, table

entries with u(X) = 0 may be omitted.

• the explicit form is fully expressive:

any utility function u : 2R → R may be so described

• the explicit form is not concise: it may require up to 2n entries

Even very simple utility functions may require exponential space: e.g.

the additive function mapping bundles to their cardinality (why?)

Remark: Of course, any additive utility function could be encoded very

concisely: just store the utilities for individual goods + the information

that this function is supposed to be additive ; linear space complexity.

But this is not a general method (not fully expressive).

Ulle Endriss (ulle@illc.uva.nl) 12

Preference Representation in Combinatorial Domains Multiagent Systems 2006

The k-additive Form

• A utility function is called k-additive iff the utility assigned to a

bundle X can be represented as the sum of basic utilities assigned

to subsets of X with cardinality ≤ k (limited synergies).

• The k-additive form of representing utility functions:

u(X) =
∑

T⊆X

αT with αT = 0 whenever |T | > k

Example: u = 3.x1 + 7.x2 − 2.x2.x3 is a 2-additive function

• That is, specifying a utility function in this language means

specifying the coefficients αT for bundles T ⊆ R.

• In the context of resource allocation, the value αT can be seen as

the additional benefit incurred from owning the items in T

together , i.e. beyond the benefit of owning all proper subsets.

Ulle Endriss (ulle@illc.uva.nl) 13

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Expressive Power

The k-additive form is fully expressive, if we choose k large enough:

Proposition 2 Any utility function is representable in k-additive form

for some k ≤ |R|.

Proof: For any utility function u, we can define coefficients αX :

α{ } = u({ })

αX = u(X) −
∑

T⊂X αT for all X ⊆ R with X 6= { }

Hence, u(X) =
∑

T⊆X αT , which is k-additive for k = |R|. 2

The k-additive form allows for a parametrisation of synergetic effects:

• 1-additive = modular (no synergies)

• |R|-additive = general (any kind of synergies)

• . . . and everything in between

Ulle Endriss (ulle@illc.uva.nl) 14

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Comparative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two languages for defining utilities. We say that L′ is

at least as succinct as L, denoted by L � L′, iff there exist a mapping

f : L → L′ and a polynomial function p such that:

• u ≡ f(u) for all u ∈ L (they represent the same functions); and

• size(f(u)) ≤ p(size(u)) for all u ∈ L (polysize reduction).

Write L ≺ L′ (strictly less succinct) iff L � L′ but not L′ � L.

Two languages can also be incomparable with respect to succinctness.

Ulle Endriss (ulle@illc.uva.nl) 15

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Explicit vs. k-additive Form

Proposition 3 The explicit and the k-additive form of representing

utility functions are incomparable with respect to succinctness.

Proof sketch: The following two functions can be used to prove the

mutual lack of a polysize reduction:

• u1(X) = |X|: representing u1 requires |R| non-zero coefficients in

the k-additive form (linear); but 2|R| − 1 non-zero values in the

explicit form (exponential).

• u2(X) = 1 for |X| = 1 and u2(X) = 0 otherwise: requires |R|

non-zero values in the explicit form (linear); but 2|R| − 1 non-zero

coefficients in the k-additive form (exponential), namely αT = 1

for |T | = 1, αT = −2 for |T | = 2, αT = 3 for |T | = 3, . . .

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent Resource Allo-

cation with k-additive Utility Functions. DIMACS-LAMSADE Workshop 2004.

Ulle Endriss (ulle@illc.uva.nl) 16

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Weighted Propositional Formulas

An alternative approach to preference representation is based on

weighted propositional formulas . . .

Notation: finite set of propositional letters PS (representing goods);

propositional language LPS over PS can describe requirements.

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

I If we restrict goals to conjunctions of atoms (of at most length k),

then this corresponds directly to the k-additive form.

Ulle Endriss (ulle@illc.uva.nl) 17

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Weighted Conjunctions of Literals

Proposition 4 The language of weighted conjunctions of literals is

more succinct than the k-additive form.

Proof sketch: Every conjunction of atoms is also a conjunction of

literals, so the latter at at least as succinct as the k-additive form. X

To separate the two consider u({ }) = 1 and u(X) = 0 for X 6= { }:

u is generated by G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} (linear), but requires

exponentially many coefficients in the k-add. form: αT = (−1)|T |. X

Y. Chevaleyre, U. Endriss, and J. Lang. Expressive Power of Weighted Proposi-

tional Formulas for Cardinal Preference Modelling. Proc. KR-2006.

Ulle Endriss (ulle@illc.uva.nl) 18

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Weighted Conjunctions of Literals (cont.)

Proposition 5 The language of weighted conjunctions of literals is at

least as succinct as the explicit form.

Proof: Let u be any utility function given in explicit form. For each

bundle X with u(X) 6= 0 add the following goal to your goal base:








∧

p∈X

p



 ∧





∧

p6∈X

¬p



 , u(X)





That is, the cardinality of the goal base is equal to the number of

non-zero values in the explicit form, and each goal has length n. 2

So this may seem the “best” language. But:

• some (simple) utilities may take more space than in the explicit or

k-additive form (albeit not exponentially more)

• now representations are not unique anymore

Ulle Endriss (ulle@illc.uva.nl) 19

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Program-based Representations

Yet another approach to representing preferences would be to define

utilities in terms of a program: input bundle, output utility value.

But not just any program will do. Requirements:

• it must be possible to efficiently validate that a given string

constitutes a syntactically correct program; and

• we have to have an effective method of computing the output of

the program for any given input.

Dunne et al. (2005) propose such a program-based approach based on

so-called straight-line programs (warning: this is rather technical).

One result says that any function computable by a deterministic Turing

Machine in time T is representable by an SLP with O(T log T) lines.

P.E. Dunne, M. Wooldridge, and M. Laurence. The Complexity of Contract Ne-

gotiation. Artificial Intelligence, 164(1–2):23–46, 2005.

Ulle Endriss (ulle@illc.uva.nl) 20

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Ordinal Preferences

Next we are going to look into different languages for representing

ordinal preference structures.

Recall that an explicit representation of an ordinal preference relation

� over 2n alternatives requires space up to O(2n · 2n): for each pair of

bundles, say which one is preferred.

Ulle Endriss (ulle@illc.uva.nl) 21

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Prioritised Goals

Again, associate goods with propositional letters in PS and bundles

with models M ∈ 2PS . Goals can be expressed as formulas in the

propositional language LPS .

Instead of weights, we now have a priority relation over goals.

Assuming this priority relation is a total order, it can be represented by

a function rank : N → N mapping each (index of a) goal to its rank.

By convention, a lower rank means higher priority .

A goal base is now a finite set of goals with an associated rank

function: G = 〈{ϕ1, . . . , ϕm}, rank〉.

I Ideally, all goals will get satisfied. But if not, how can we extend the

priority relation over goals to a preference relation over alternatives?

Ulle Endriss (ulle@illc.uva.nl) 22

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Combining Priorities

There are several options (convention: min({ }) = +∞):

• Best-out ordering:

M � M ′ iff min{rank(i) | M 6|= ϕi} ≤ min{rank(i) | M ′ 6|= ϕi}

That is, preference depends (only) on the rank of the most

important goal that is being violated.

• Discrimin ordering:

Let d(M, M ′) = min{rank(i) | M 6|= ϕi and M ′ |= ϕi} be the

rank of the most important goal “discriminating” the alternatives.

M � M ′ iff d(M, M ′) ≤ d(M ′, M) or

{ϕi | M |= ϕi} = {ϕi | M ′ |= ϕi}

Ulle Endriss (ulle@illc.uva.nl) 23

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Combining Priorities (cont.)

• Leximin ordering:

Let dk(M) = |{ϕi | M |= ϕi and rank(ϕi) = k}| be the number

of goals of rank k that are satisfied by alternative M .

M � M ′ iff (1) for all k: dk(M) = dk(M ′) or

(2) there exists a k such that dk(M) < dk(M ′)

and for all j < k: dj(M) = dj(M
′)

Ulle Endriss (ulle@illc.uva.nl) 24

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Properties

• None of the three variants of combining prioritised goals leads to a

fully expressive preference representation language.

• The best-out ordering and the leximin ordering result in connected

preference relations, but the discrimin ordering typically does not.

• For the strict preference relations we have:

– best-out preference entails discrimin preference; and

– discrimin preference entails leximin preference

Ulle Endriss (ulle@illc.uva.nl) 25

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Ceteris Paribus Preferences

In the language of ceteris paribus prefernces, preferences are expressed

as statements of the form C : ϕ > ϕ′, meaning:

“If C is true, all other things being equal, I prefer alternatives

satisfying ϕ ∧ ¬ϕ′ over those satisfying ¬ϕ ∧ ϕ′.”

The “other things” are the truth values of the propositional variables

not occurring in ϕ and ϕ′. A preference relation can be constructed as

the transitive closure of the union of individual preference statements.

Discussion: interesting from a cognitive point of view (close to human

intuition), but of rather high complexity .

An important sublanguage of ceteris paribus preferences, imposing

various restrictions on goals, are CP-nets.

C. Boutilier et al. CP-nets: A Tool for Representing and Reasoning with Condi-

tional Ceteris Paribus Preference Statements. JAIR, 21:135–191, 2004.

Ulle Endriss (ulle@illc.uva.nl) 26

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Summary

• Preference representation is relevant to MAS, because agents need

to communicate their interests to make collective decisions.

• We have emphasised expressive power and succinctness:

– expressive power should be appropriate; note that many

game-theoretical results presuppose that agents can express

any preference structure (e.g. whatever your true valuation,

you should be able to communicate it to the auctioneer)

– succinctness is crucial in combinatorial domains (such as

resource allocation)

• Languages considered (there are many more):

– cardinal: explicit form, k-additive form, weighted goals, and

program-based representations of utility functions

– ordinal: prioritised goals and ceteris paribus statements

Ulle Endriss (ulle@illc.uva.nl) 27

Preference Representation in Combinatorial Domains Multiagent Systems 2006

References

For a concise overview and for a discussion of the role of preference

representation in the context of multiagent resource allocation, consult:

• Y. Chevaleyre et al. Issues in Multiagent Resource Allocation.

Informatica, 30:3–31, 2006. Section on Preference Representation.

For an in-depth survey of logic-based languages for representing

preferences, refer to:

• J. Lang. Logical Preference Representation and Combinatorial

Vote. Annals of Mathematics and Artificial Intelligence,

42(1):37–71, 2004.

Ulle Endriss (ulle@illc.uva.nl) 28

Preference Representation in Combinatorial Domains Multiagent Systems 2006

What next?

Next week, we are going to continue discussing issues related to

preference representation, but we are going to focus specifically on

languages developed for combinatorial auctions:

• Bidding Languages for Combinatorial Auctions

Ulle Endriss (ulle@illc.uva.nl) 29

