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Preference Representation in Combinatorial Domains

The collective choices made in a MAS will be driven by the interests of

individual agents. Agents must be able to communicate preferences

(directly through full revelation, or indirectly via “moves” in a game).

• So far, we have treated this topic only very abstractly , by saying

that agents “have” a utility function or “report” a valuation.

• In combinatorial domains, preference representation is not trivial:

– for instance, negotiation over n goods requires expressing

preferences over 2n bundles

– also: multi-criteria decision making; voting for assemblies; . . .

So far, we have ignored this computational problem in the course

(as is common practice in the economics literature).

• In this lecture, we are going to review and compare different

preference representation languages.
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Plan for Today

• General requirements on preference representation languages

• Distinguish cardinal and ordinal preference structures

• Different classes of utility functions (cardinal preferences):

monotonic, dichotomous, modular, concave utilities . . .

• Review of languages for representing utility functions:

explicit form, k-additive form, weighted goals, . . .

• Discussion of properties of different representation languages:

expressive power and comparative succinctness

• Review of languages for ordinal preference representation:

prioritised goals and ceteris paribus preferences
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Preference Representation Languages

The following questions should be addressed when you investigate a

preference representation language:

• Cognitive relevance: How close is a given language to the way in

which humans would express their preferences?

• Elicitation: How difficult is it to elicit the preferences of an agent

so as to represent them in the chosen language?

• Expressive power : Can the chosen language encode all the

preference structures we are interested in?

• Succinctness: Is the representation of (typical) preference

structures succinct? Is one language more succinct than the other?

• Complexity : What is the computational complexity of related

decision problems, such as comparing two alternatives?

We are going to concentrate on expressive power and succinctness.
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Cardinal and Ordinal Preferences

A preference structure represents an agent’s preferences over a set of

alternatives X . There are different types of preference structures:

• A cardinal preference structure is a (utility or valuation) function

u : X → Val , where Val is usually a set of numerical values such

as N or R.

• An ordinal preference structure is a binary relation � over the set

of alternatives, that is reflexive and transitive (and connected).

Note that we shall assume that X is finite.
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Some Observations

• Intrapersonal comparison: ordinal and cardinal preferences allow

for comparing the satisfaction of an agent for different alternatives

• Interpersonal comparison: ordinal preferences don’t allow for

interpersonal comparison (“Ann likes x more than Bob likes y”)

• Preference intensity : ordinal preferences cannot express preference

intensity; cardinal preferences can (subject to Val being numerical)

• Representability : a connected ordinal preference relation � is

representable by a utility function u: x � y iff u(x) ≤ u(y)

• Cognitive relevance: hard to make general statements, but at least

ordinal preferences don’t require reasoning with numerical utilities

• Explicit representation: the explicit representation of cardinal and

ordinal preferences have space complexity O(|X |) and O(|X |2),

respectively (why?)
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Preferences in Resource Allocation Scenarios

Let R be a finite set of indivisible resources (goods) with |R| = n.

Assume there are no externalities: agent preferences only depend on

their assigned bundle (not on the allocation as a whole or on any other

outside factors) ; need to model preference structures over X = 2R

Hence, the explicit representation has exponential space complexity.

Possible ways out:

• only consider restricted classes of preference structures, which

may allow for a more concise representation; and/or

• consider (and compare) different representation languages.

We start with the case of utility functions . . .
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Classes of Utility Functions

Now a utility function is a mapping u : 2R → R.

• u is normalised iff u({ }) = 0

• u is non-negative iff u(X) ≥ 0

• u is monotonic iff u(X) ≤ u(Y ) whenever X ⊆ Y

• u is dichotomous iff u(X) = 0 or u(X) = 1

• u is modular iff u(X ∪ Y ) = u(X) + u(Y ) − u(X ∩ Y )

• u is additive iff u(X) =
∑

x∈X

u({x})

Important: for the above definitions, the respective (in)equations are

understood to hold for all bundles X, Y ⊆ R.

I What is the connection between modular and additive utilities?
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Modular and Additive Utilities

Modularity and additivity are really just two different names for the

same thing (well, almost):

Proposition 1 A utility function is additive iff it is both modular and

normalised.

Proof: “⇒”: obvious X

“⇐”: Let X ⊆ R, x ∈ X.

From modularity, we get u(X) = u(X\{x}) + u({x}) − u({ }).

As u is normalised, we obtain u(X) = u(X\{x}) + u({x}).

If we iterate this step |X| times, we get u(X) =
∑

x∈X

u({x}). 2
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More Classes of Utility Functions

A few more commonly used classes of utility functions:

• u is submodular iff u(X ∪ Y ) ≤ u(X) + u(Y ) − u(X ∩ Y )

• u is supermodular iff u(X ∪ Y ) ≥ u(X) + u(Y ) − u(X ∩ Y )

• u is concave iff u(X ∪ Y ) − u(Y ) ≤ u(X ∪ Z) − u(Z) for Y ⊇ Z

– Intuition: marginal utility (of obtaining X) decreases as we

move to a better starting position (namely from Z to Y )

• u is convex iff u(X ∪ Y ) − u(Y ) ≥ u(X ∪ Z) − u(Z) for Y ⊇ Z

Note: sub(super)modular functions are also called sub(super)additive;

different authors may or may not assume functions to be normalised.
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Observations

The following relationships amongst some of these classes of utility

functions are easily checked:

• submodular ∩ supermodular = modular

• u submodular iff −u supermodular

• u concave iff −u convex

• concave ⊂ submodular (Proof: set Z = X ∩ Y )

• convex ⊂ supermodular
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Explicit Representation

The explicit form of representing a utility function u consists of a table

listing for every bundle X ⊆ R the utility u(X). By convention, table

entries with u(X) = 0 may be omitted.

• the explicit form is fully expressive:

any utility function u : 2R → R may be so described

• the explicit form is not concise: it may require up to 2n entries

Even very simple utility functions may require exponential space: e.g.

the additive function mapping bundles to their cardinality (why?)

Remark: Of course, any additive utility function could be encoded very

concisely: just store the utilities for individual goods + the information

that this function is supposed to be additive ; linear space complexity.

But this is not a general method (not fully expressive).

Ulle Endriss (ulle@illc.uva.nl) 12



Preference Representation in Combinatorial Domains Multiagent Systems 2006

The k-additive Form

• A utility function is called k-additive iff the utility assigned to a

bundle X can be represented as the sum of basic utilities assigned

to subsets of X with cardinality ≤ k (limited synergies).

• The k-additive form of representing utility functions:

u(X) =
∑

T⊆X

αT with αT = 0 whenever |T | > k

Example: u = 3.x1 + 7.x2 − 2.x2.x3 is a 2-additive function

• That is, specifying a utility function in this language means

specifying the coefficients αT for bundles T ⊆ R.

• In the context of resource allocation, the value αT can be seen as

the additional benefit incurred from owning the items in T

together , i.e. beyond the benefit of owning all proper subsets.
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Expressive Power

The k-additive form is fully expressive, if we choose k large enough:

Proposition 2 Any utility function is representable in k-additive form

for some k ≤ |R|.

Proof: For any utility function u, we can define coefficients αX :

α{ } = u({ })

αX = u(X) −
∑

T⊂X αT for all X ⊆ R with X 6= { }

Hence, u(X) =
∑

T⊆X αT , which is k-additive for k = |R|. 2

The k-additive form allows for a parametrisation of synergetic effects:

• 1-additive = modular (no synergies)

• |R|-additive = general (any kind of synergies)

• . . . and everything in between
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Comparative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two languages for defining utilities. We say that L′ is

at least as succinct as L, denoted by L � L′, iff there exist a mapping

f : L → L′ and a polynomial function p such that:

• u ≡ f(u) for all u ∈ L (they represent the same functions); and

• size(f(u)) ≤ p(size(u)) for all u ∈ L (polysize reduction).

Write L ≺ L′ (strictly less succinct) iff L � L′ but not L′ � L.

Two languages can also be incomparable with respect to succinctness.

Ulle Endriss (ulle@illc.uva.nl) 15

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Explicit vs. k-additive Form

Proposition 3 The explicit and the k-additive form of representing

utility functions are incomparable with respect to succinctness.

Proof sketch: The following two functions can be used to prove the

mutual lack of a polysize reduction:

• u1(X) = |X|: representing u1 requires |R| non-zero coefficients in

the k-additive form (linear); but 2|R| − 1 non-zero values in the

explicit form (exponential).

• u2(X) = 1 for |X| = 1 and u2(X) = 0 otherwise: requires |R|

non-zero values in the explicit form (linear); but 2|R| − 1 non-zero

coefficients in the k-additive form (exponential), namely αT = 1

for |T | = 1, αT = −2 for |T | = 2, αT = 3 for |T | = 3, . . .

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent Resource Allo-

cation with k-additive Utility Functions. DIMACS-LAMSADE Workshop 2004.
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Weighted Propositional Formulas

An alternative approach to preference representation is based on

weighted propositional formulas . . .

Notation: finite set of propositional letters PS (representing goods);

propositional language LPS over PS can describe requirements.

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

I If we restrict goals to conjunctions of atoms (of at most length k),

then this corresponds directly to the k-additive form.

Ulle Endriss (ulle@illc.uva.nl) 17

Preference Representation in Combinatorial Domains Multiagent Systems 2006

Weighted Conjunctions of Literals

Proposition 4 The language of weighted conjunctions of literals is

more succinct than the k-additive form.

Proof sketch: Every conjunction of atoms is also a conjunction of

literals, so the latter at at least as succinct as the k-additive form. X

To separate the two consider u({ }) = 1 and u(X) = 0 for X 6= { }:

u is generated by G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} (linear), but requires

exponentially many coefficients in the k-add. form: αT = (−1)|T |. X

Y. Chevaleyre, U. Endriss, and J. Lang. Expressive Power of Weighted Proposi-

tional Formulas for Cardinal Preference Modelling. Proc. KR-2006.
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Weighted Conjunctions of Literals (cont.)

Proposition 5 The language of weighted conjunctions of literals is at

least as succinct as the explicit form.

Proof: Let u be any utility function given in explicit form. For each

bundle X with u(X) 6= 0 add the following goal to your goal base:








∧

p∈X

p



 ∧





∧

p6∈X

¬p



 , u(X)





That is, the cardinality of the goal base is equal to the number of

non-zero values in the explicit form, and each goal has length n. 2

So this may seem the “best” language. But:

• some (simple) utilities may take more space than in the explicit or

k-additive form (albeit not exponentially more)

• now representations are not unique anymore
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Program-based Representations

Yet another approach to representing preferences would be to define

utilities in terms of a program: input bundle, output utility value.

But not just any program will do. Requirements:

• it must be possible to efficiently validate that a given string

constitutes a syntactically correct program; and

• we have to have an effective method of computing the output of

the program for any given input.

Dunne et al. (2005) propose such a program-based approach based on

so-called straight-line programs (warning: this is rather technical).

One result says that any function computable by a deterministic Turing

Machine in time T is representable by an SLP with O(T log T ) lines.

P.E. Dunne, M. Wooldridge, and M. Laurence. The Complexity of Contract Ne-

gotiation. Artificial Intelligence, 164(1–2):23–46, 2005.
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Ordinal Preferences

Next we are going to look into different languages for representing

ordinal preference structures.

Recall that an explicit representation of an ordinal preference relation

� over 2n alternatives requires space up to O(2n · 2n): for each pair of

bundles, say which one is preferred.
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Prioritised Goals

Again, associate goods with propositional letters in PS and bundles

with models M ∈ 2PS . Goals can be expressed as formulas in the

propositional language LPS .

Instead of weights, we now have a priority relation over goals.

Assuming this priority relation is a total order, it can be represented by

a function rank : N → N mapping each (index of a) goal to its rank.

By convention, a lower rank means higher priority .

A goal base is now a finite set of goals with an associated rank

function: G = 〈{ϕ1, . . . , ϕm}, rank〉.

I Ideally, all goals will get satisfied. But if not, how can we extend the

priority relation over goals to a preference relation over alternatives?
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Combining Priorities

There are several options (convention: min({ }) = +∞):

• Best-out ordering:

M � M ′ iff min{rank(i) | M 6|= ϕi} ≤ min{rank(i) | M ′ 6|= ϕi}

That is, preference depends (only) on the rank of the most

important goal that is being violated.

• Discrimin ordering:

Let d(M, M ′) = min{rank(i) | M 6|= ϕi and M ′ |= ϕi} be the

rank of the most important goal “discriminating” the alternatives.

M � M ′ iff d(M, M ′) ≤ d(M ′, M) or

{ϕi | M |= ϕi} = {ϕi | M ′ |= ϕi}
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Combining Priorities (cont.)

• Leximin ordering:

Let dk(M) = |{ϕi | M |= ϕi and rank(ϕi) = k}| be the number

of goals of rank k that are satisfied by alternative M .

M � M ′ iff (1) for all k: dk(M) = dk(M ′) or

(2) there exists a k such that dk(M) < dk(M ′)

and for all j < k: dj(M) = dj(M
′)
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Properties

• None of the three variants of combining prioritised goals leads to a

fully expressive preference representation language.

• The best-out ordering and the leximin ordering result in connected

preference relations, but the discrimin ordering typically does not.

• For the strict preference relations we have:

– best-out preference entails discrimin preference; and

– discrimin preference entails leximin preference
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Ceteris Paribus Preferences

In the language of ceteris paribus prefernces, preferences are expressed

as statements of the form C : ϕ > ϕ′, meaning:

“If C is true, all other things being equal, I prefer alternatives

satisfying ϕ ∧ ¬ϕ′ over those satisfying ¬ϕ ∧ ϕ′.”

The “other things” are the truth values of the propositional variables

not occurring in ϕ and ϕ′. A preference relation can be constructed as

the transitive closure of the union of individual preference statements.

Discussion: interesting from a cognitive point of view (close to human

intuition), but of rather high complexity .

An important sublanguage of ceteris paribus preferences, imposing

various restrictions on goals, are CP-nets.

C. Boutilier et al. CP-nets: A Tool for Representing and Reasoning with Condi-

tional Ceteris Paribus Preference Statements. JAIR, 21:135–191, 2004.
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Summary

• Preference representation is relevant to MAS, because agents need

to communicate their interests to make collective decisions.

• We have emphasised expressive power and succinctness:

– expressive power should be appropriate; note that many

game-theoretical results presuppose that agents can express

any preference structure (e.g. whatever your true valuation,

you should be able to communicate it to the auctioneer)

– succinctness is crucial in combinatorial domains (such as

resource allocation)

• Languages considered (there are many more):

– cardinal: explicit form, k-additive form, weighted goals, and

program-based representations of utility functions

– ordinal: prioritised goals and ceteris paribus statements
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What next?

Next week, we are going to continue discussing issues related to

preference representation, but we are going to focus specifically on

languages developed for combinatorial auctions:

• Bidding Languages for Combinatorial Auctions
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