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Combinatorial Auctions

In a combinatorial auction, the auctioneer puts several goods on sale

and the other agents submit bids for entire bundles of goods.

Given a set of bids, the winner determination problem is the problem

of deciding which of the bids to accept.

• The solution must be feasible (no good may be allocated to more

than one agent).

• Ideally, it should also be optimal (in the sense of maximising

revenue for the auctioneer).

So besides the game-theoretical problem of stopping bidders from

strategising, in combinatorial auctions we also face a challenging

algorithmic problem.
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Plan for Today

• Reminder why combinatorial auctions are important

• Computational issues: complexity of winner determination in

combinatorial auctions

• Algorithmic issues: solving a combinatorial auction

• Game-theoretical issues will be discussed next week
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Complements and Substitutes

The value an agent assigns to a bundle of goods may relate to the

value it assigns to the individual goods in a variety of ways . . .

• Complements: The value assigned to a set is greater than the

sum of the values assigns to its elements.

A standard example for complements would be a pair of shoes

(a left shoe and a right shoe).

• Substitutes: The value assigned to a set is lower than the sum of

the values assigned to its elements.

A standard example for substitutes would be a ticket to the

theatre and another one to a football match for the same night.

In such cases an auction mechanism allocating one item at a time is

problematic as the best bidding strategy in one auction may depend on

whether the agent can expect to win certain future auctions.
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Combinatorial Auction Protocol

• Setting: one seller (auctioneer) and several potential buyers

(bidders); many goods to be sold

• Bidding: the bidders bid by submitting their valuations to the

auctioneer (not necessarily truthfully)

• Clearing: the auctioneer announces a number of winning bids

The winning bids determine which bidder obtains which good, and

how much each bidder has to pay. No good may be allocated to

more than one bidder.
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Bidding Languages

• As there are 2n − 1 non-empty bundles for n goods, submitting

complete valuations may not be feasible.

• We assume that each bidder submits a number of atomic bids

(Bi, pi) specifying the price pi the bidder is prepared to pay for a

particular bundle Bi.

• The bidding language determines what combinations of individual

bids may be accepted. Today, we (mostly) assume that at most

one bid of each bidder can be accepted.

• In general, we may think of the bidding language as determining a

conflict graph: bids are vertices and edges connect bids that

cannot be accepted together.

• The bidding language also determines how to compute the overall

price (in most cases, including today, simply the sum).
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The Winner Determination Problem

The winner determination problem (WDP) is the problem of finding a

set of winning bids that will maximise the revenue of the auctioneer.
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Example

Each bidder submit a number of bids describing their valuation. Each

bid (Bi, pi) specifies which price pi the bidder is prepared to pay for a

particular bundle Bi. The auctioneer may accept at most one atomic

bid per bidder (other bidding languages are possible).

Agent 1: ({a, b}, 5), ({b, c}, 7), ({c, d}, 6)

Agent 2: ({a, d}, 7), ({a, c, d}, 8)

Agent 3: ({b}, 5), ({a, b, c, d}, 12)

What would be the optimal solution?

I The importance of CAs has been recognised for quite some time

(in Economics), but not until very recently have algorithms that can

solve realistic problem instances been developed (in Computer

Science).
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Recap: Complexity Theory

• Given a class of problems parametrised by their “size”, how hard it

is to solve a problem of size n?

• Distinguish: time/space worst-case/average-case complexity

• Problems that can be solved in polynomial time (P) are considered

tractable, problems requiring exponential time (EXPTIME) not.

• Think of a problem that requires searching through a tree. If you

are lucky and go down the right branch at every branching point,

you may need only polynomial time, otherwise exponential time.

A nondeterministic algorithm is a (hypothetical) algorithm with an

“oracle” that tells us which branch to explore next.

• NP is the class of decision problems that can be solved by such

nondeterministic algorithms in polynomial time.
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Recap: Complexity Theory (cont.)

• Equivalent definition: NP is the class of problems for which a

candidate solution can be verified in (determ.) polynomial time.

• A decision problem is NP-hard iff it is at least as hard as any of

the problems in NP.

• A decision problem is NP-complete iff it is NP-hard and in NP.

• We do not know whether P =NP, but strongly suspect P 6=NP.

• NP-complete problems are generally considered intractable. Unless

P=NP, there can be no general algorithm solving NP-complete

problems efficiently.

• As a rule of thumb, NP-completeness means that a näıve

approach won’t work, but a sophisticated algorithm may well give

good results in practice.
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Complexity of Winner Determination

The decision problem underlying the WDP is NP-complete:

Theorem 1 Let K ∈ Z. The problem of checking whether there

exists a solution to a given combinatorial auction instance generating a

revenue exceeding K is NP-complete.

This has first been stated by Rothkopf et al. (1998).

Recall that proving NP-completeness requires us to show that the

problem is both (1) NP-hard and (2) in NP . . .

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable Com-

binational Auctions. Management Science, 44(8):1131–1147, 1998.
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Proof of NP-hardness

We are going to reduce our problem to Set Packing, one of the

standard problems known to be NP-complete:

Set Packing

Instance: Collection C of finite sets and K ∈ Z
Solution: Collection of disjoint sets C′ ⊆ C
Question: Is there a solution C′ such that |C′| > K?

Given an instance C of Set Packing, consider the following CA:

• Goods: each item in one of the sets in C is a good

• Bidders: one for each set in C + one other bidder (called 0)

• Valuations: vC(R) = 1 if R = C and vC(R) = 0 otherwise;

v0(R) = 0 for all bundles R

That is, every bidder values “its” bundle at 1 and every other bundle

at 0. Bidder 0 values all bundles at 0.
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Proof of NP-hardness (cont.)

Observe that not every solution to the CA immediately corresponds to

a valid solution of Set Packing: the bundles owned by individual

agents may not all be sets in C.

But: for every solution to the CA there exists a(nother) solution

generating the same revenue that does directly correspond to a valid

solution for Set Packing — just assign any goods owned by a bidder

with utility 0 to bidder 0 (this reallocation does not affect the revenue).

And the revenue is equal to |C′|.

Hence, any algorithm for the decision problem underlying the WDP

can be used for Set Packing as well. So the former must be at least

as hard as the latter, i.e. it must be at least NP-hard.
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Proof of Membership in NP

This part is in fact very easy . . .

Recall that a problem belongs to NP if it is possible to verify the

correctness of a potential solution in polynomial time.

This is clearly the case here: Given an allocation of goods to bidders,

we can compute the revenue generated in polynomial time. The

allocation then constitute a good solution iff the revenue exceeds K.
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Remarks

To be precise, we have proved NP-hardness wrt. the number of pairs

of bidders and bundles with non-zero utility . This corresponds to the

number of sets involved in Set Packing. Observe that this number

itself may already be very high (exponential in the number of goods).

In practice, a bidder might not communicate a full representation of its

valuation. What information does get communicated to the auctioneer

depends on the choice of bidding language.

Strictly speaking, for every bidding language we need to prove a new

complexity result (although we always seem to get NP-completeness).

NP-membership also holds with respect to both the number of bidders

and the number of goods (a much smaller unit).
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Intractable Special Cases

There are various results that show that seemingly severe restrictions of

the WDP remain NP-hard . Our proof already shows one such result:

Winner determination remains NP-hard if each bidder only

submits a single bid and assigns it a price of 1.

Further results of this kind can be derived by exploiting the special

characteristics of the NP-complete reference problem used for the

reduction.

D. Lehmann, R. Müller, and T. Sandholm. The Winner Determination Problem.

In P. Cramton et al. (eds.), Combinatorial Auctions, MIT Press, 2006.
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Tractable Special Cases

Another line of research has tried to identify special cases for which

the WDP becomes tractable. Such cases are characterised by specific

structural properties of the valuations that bidders report.

Here is an example:

Theorem 2 (Rothkopf et al., 1998) If the conflict graph is a tree,

then the WDP can be solved in polynomial time.

Proof sketch: Start from the leaves of the tree, going up. Accept a bid

iff it has a higher price than the best combination you can get from its

offspring.

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable Com-

binational Auctions. Management Science, 44(8):1131–1147, 1998.
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Solving the Winner Determination Problem

We have seen that the WDP is intractable (NP-complete) in its

general form. Nevertheless, sophisticated search algorithms often

manage to solve even large CA instances in practice.

There are two types of approaches to optimal winner determination in

the general case:

• Use powerful general-purpose mathematical programming software

(next slide)

• Develop search algorithms specifically for winner determination,

combining general AI search techniques and domain-specific

heuristics (rest of this lecture)

Other options include developing special-purpose algorithms for

tractable subclasses (as discussed) and approximation algorithms for

the general case (which we won’t discuss here).
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Integer Programming Approach

Suppose bidders submit n bids as bundle/price pairs (Bi, pi) with the

implicit understanding that the auctioneer may accept any combination

of non-conflicting bids and charge the sum of the associated prices

(this corresponds to the so-called OR bidding language).

Introduce a decision variable xi ∈ {0, 1} for each bid (Bi, pi).

Then the WDP becomes the following integer programming problem:

I Maximise
n∑

i=1

pi · xi subject to
∑

i∈Bids(g)

xi ≤ 1 for all goods g,

where Bids(g) = {i ∈ [1, n] | g ∈ Bi}

Highly optimised software packages for mathematical programming

(such as CPLEX/ILOG) can often solve such problems efficiently.
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Search for an Optimal Solution

Next we are going to see how to customise well-known search

techniques developed in AI so as to solve the WDP.

This part of the lecture will largely follow the survey article by

Sandholm (2006).

T. Sandholm. Optimal Winner Determination Algorithms. In P. Cramton et al.

(eds.), Combinatorial Auctions, MIT Press, 2006.
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Search Techniques in AI

A generic approach to search uses the state-space representation:

• Represent the problem as a set of states and define moves

between states. Given an initial state, this defines a search tree.

• The goal states are states that correspond to valid solutions.

• Each move is associated with a cost (or a payoff ).

• A solution is a sequence of moves from the initial state to a goal

state with minimum cost (maximum payoff ).

• Example: route finding (states are cities and moves are directly

connecting roads), but it also applies to CAs . . .

A search algorithm defines the order in which to traverse the tree:

• Uninformed search: breadth-first, depth-first, iterative deepening

• Heuristic-guided search: branch-and-bound, A*
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State Space and Moves

There are (at least) two natural ways of representing the state space

and moves between states:

• Either: Define a state as a set of goods for which an allocation

decision has already been made. Then making a move in the state

space amounts to making a decision for a further good.

• Or: Define a state as a set of bids for which an acceptance

decision has already been made. In this case, a move amounts to

making a decision for a further bid.

What is the initial state? What are the goal states?

According to Sandholm (2006), the bid-oriented approach tends to

give better performance in practice.
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Moves in Bid-oriented Search

We represent bids as triples (ai, Bi, pi): agent ai is offering to buy the

bundle Bi for a price of pi.

The initial state is when no decisions regarding bids have been made.

A move amounts to making a decision (accept/reject) for a new bid.

The bidding language specifies which bids (if any) must be

accepted/rejected given earlier decisions. Example:

I If each agent submits a bid for every bundle with non-zero

valuation, then we can accept at most one bid per agent

(corresponding to the so-called XOR language); and only bids with

empty intersection of bundles may be accepted.

All states are goal states (can stop any time, but may not be optimal).

Observe that that the search tree will be binary (accept or reject?).
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Example

Source: Sandholm (2006)
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Uninformed Search

Uninformed search algorithms (in particular depth-first search) can be

used to find a solution with a given minimum revenue: traverse the

tree and keep the best solution encountered so far in memory.

Optimality can only be guaranteed if we traverse the entire search tree

(not feasible for interesting problem instances).
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Heuristic-guided Search

In the worst case, any algorithm may have to search the entire search

tree. But good heuristics, that tell us which part of the tree to explore

next, often allow us to avoid this in practice.

For any node N in the search tree, let g(N) be the revenue generated

by accepting the bids accepted according to N , and only those.

We are going to need a heuristic that allows us to estimate for every

node N how much revenue over and above g(N) can be expected if

we pursue the path through N . This will be denoted as h(N). The

more accurate the estimate, the better — but the only strict

requirement is that h never underestimates the true revenue.

We are going to describe two algorithms using such heuristics:

• depth-first branch-and-bound

• the A* algorithm
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Heuristic Upper Bounds on Revenue

Sandholm (2006) discusses several ways of defining a heuristic function

h such that g(N) + h(N) is guaranteed to be an upper bound on

revenue for any path through node N .

Here is one such heuristic function:

• For each good g, compute its maximum contribution as:

c(g) = max{ p

|B|
| (B, p) ∈ Bids and g ∈ B}

• Then define h(N) as the sum of all c(g) for those goods g that

have not yet been allocated in N .

This is indeed an upper bound (why?).

Can you think of an obvious refinement of this heuristic?
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Depth-first Branch-and-Bound

This algorithm works like basic (uninformed) depth-first search, except

that branches that have no chance of developing into an optimal

solution get pruned on the fly:

• Traverse the search tree in depth-first order.

• Keep track of which of the nodes encountered so far would

generate maximum revenue. Call that node N∗.

• If a node N with g(N) + h(N) ≤ g(N∗) is encountered, remove

that node and all its offspring from the search tree.

This is correct (guarantees that the optimal solution does not get

removed) whenever the heuristic function h is guaranteed never to

underestimate expected marginal revenue (why?).
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The A* Algorithm

The A* algorithm (Hart et al., 1968) is probably the most famous

search algorithm in AI. It works as follows:

• The fringe is the set of leaf nodes of the subtree visited so far

(initially just the root node).

• Compute f(N) = g(N) + h(N) for every node N in the fringe.

• Expand the node N maximising f(N); that is, remove it from the

fringe and add its (two) immediate children instead.

By a standard result in AI, A* with an admissible heuristic function

(here: h never underestimates marginal revenue) is optimal: the first

solution found (when no bids are left) will generate maximum revenue.

P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Deter-

mination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.
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Branching Heuristics

So far, we have not specified which bid to select for branching in each

round (for any of our algorithms). This choice does not affect

correctness, but it may affect speed.

There are two basic heuristics for bid selection:

• Select a bid with a high price and a low number of items.

• Select a bid that would decompose the conflict graph of the

remaining bids (if available).
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Tractable Subproblems

As a final example for possible fine-tuning of the algorithm, we can try

to identify tractable subproblems at nodes and solve them using

special-purpose algorithms.

Here are two very simple examples:

• If the bid conflict graph is complete, i.e. any pair of remaining

bids is in conflict, then only one of them can be accepted.

; Simply pick the one with the highest price.

• If the bid conflict graph has no edges, then there is no conflict

between any of the remaining bids.

; Accept all remaining bids (assuming positive valuations/prices).
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Summary

• Combinatorial auctions are mechanisms to allocate a number of

indivisible goods to a number of agents.

• Simple (non-combinatorial) auctions do not suffice if agents have

non-additive valuations.

• Winner determination in CAs is NP-complete in the general case.

• We have seen both special cases that are still NP-complete, and

other that are tractable.

• The WDP can be tackled using both off-the-shelf mathematical

programming software and specialised AI search techniques.

• Our criterion for optimality has been maximum revenue.

Alternatively, we could try to optimise wrt. a social welfare

ordering (observe that revenue and utilitarian social welfare

coincide in case bidders submit true and complete valuations).
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What next?

Today we have looked into the computational and the algorithmic

aspects of combinatorial auctions. Next week we are going to deal

with the game-theoretical side of combinatorial auctions:

• Mechanism Design

Following this, we will look into the representation of preferences in

combinatorial domains in general, and into bidding languages for

combinatorial auction in particular.
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