Coursework #5

Deadline: Friday, 21 April 2006, 3:15pm

Question 1 (10 marks)

Given a goal base G of prioritised goals, let \preceq_G^{bo} be the *best-out* ordering, \preceq_G^{discr} the *discrimin* ordering, and \preceq_G^{lex} the *leximin* ordering with respect to that goal base, as defined in class.

- (a) Show that $(x \prec_G^{bo} y)$ entails $(x \prec_G^{discr} y)$.
- (b) Show that $(x \prec_G^{discr} y)$ entails $(x \prec_G^{lex} y)$.
- (c) Does $(x \preceq_G^{bo} y)$ entail $(x \preceq_G^{discr} y)$? Give either a proof or a counterexample.
- (d) Does $(x \preceq_G^{discr} y)$ entail $(x \preceq_G^{lex} y)$? Give either a proof or a counterexample.

Question 2 (10 marks)

Restricting attention to valuations that are both normalised and monotonic, prove that the OR language can represent all supermodular valuations, and only those.

Question 3 (10 marks)

- (a) For $K \in \mathbb{N}$, the *K*-budget valuation is defined as $v(X) = \min\{K, |X|\}$. Give a succinct representation of this valuation in the OR/XOR language.
- (b) Express the monochromatic valuation in the OR* bidding language. How many dummy items are required?
- (c) Give two examples for (classes of) valuations that are both monotonic and dichotomous. One of these should be representable in the OR language in polynomial space; the other one should be a valuation that requires exponential space in the OR language.