
Automated Reasoning 2 COMSOC 2023

Computational Social Choice 2023

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

[
http://www.illc.uva.nl/~ulle/teaching/comsoc/2023/

]
Ulle Endriss 1



Automated Reasoning 2 COMSOC 2023

Plan for Today

Today we will complete our computer-aided proof of the G-S Theorem:

• encoding relevant axioms in propositional logic

• proving the base case by calling a SAT solver

• extending the result to the general case

Ulle Endriss 2



Automated Reasoning 2 COMSOC 2023

Reminder

Aiming for a proof of the G-S Thm, we want to encode the special

case of n = 2 voters and m = 3 alternatives as a SAT instance.

We want to use variables pr,x to say that when a voting rule is applied

to profile r the outcome should include alternative x.

We decided to encode all components of the model as integers:

• voters from 0 to n-1 (0 to 2 for now)

• alternatives from 0 to m-1 (0 to 1 for now)

• preferences from 0 to m!-1 (0 to 5 for now)

• profiles from 0 to m!n-1 (0 to 35 for now)

We implemented some basic methods to retrieve objects of interest:

• allVoters(), allAlternatives(), allProfiles()

• voters(c), alternatives(c), profiles(c)

And some further methods to answer yes-no questions:

• prefers(i,x,y,r), top(i,x,r), iVariants(i,r1,r2)

Ulle Endriss 3



Automated Reasoning 2 COMSOC 2023

Literals

Want propositional variable pr,x to say that in profile r the outcome

should include alternative x. Enumerate them from 1 to m!n * m:

def posLiteral(r, x):

return r * m + x + 1

def negLiteral(r, x):

return (-1) * posLiteral(r, x)

Given a literal pr,x (as a number), we need to be able to determine

which profile r and which alternative x it is talking about.

Exercise: How can we compute r and x when given r * m + x + 1?

We can use this insight to implement a method to pretty-print literals:

>>> strLiteral(1)

’(012,012)->0’

>>> strLiteral(-108)

’not (210,210)->2’

Ulle Endriss 4



Automated Reasoning 2 COMSOC 2023

Encoding the Requirements on Voting Rules

Now we can encode our requirements. Recall our basic formula saying

that for every profile at least one alternative must be elected:

ϕat-least-one =
∧
r

(∨
x

pr,x

)

Translating this into code is immediate:

def cnfAtLeastOne():

cnf = []

for r in allProfiles():

cnf.append([posLiteral(r,x) for x in allAlternatives()])

return cnf

Try it on the Jupyter Notebook:

>>> cnfAtLeastOne()

[[1,2,3], [4,5,6], [7,8,9], [10,11,12], ..., [106,107,108]]

Ulle Endriss 5



Automated Reasoning 2 COMSOC 2023

Resoluteness

Resoluteness says that for any profile r and any distinct alternatives x

and y, not both alternatives are in the outcome for that profile.

Note: Can restrict last quantification to x < y (taken as numbers).

ϕres =
∧
r

∧
x

 ∧
y | x<y

¬pr,x ∨ ¬pr,y


Again, coding this is immediate:

def cnfResolute():

cnf = []

for r in allProfiles():

for x in allAlternatives():

for y in alternatives(lambda y : x < y):

cnf.append([negLiteral(r,x), negLiteral(r,y)])

return cnf

Remark: For the following axioms, we now can presuppose resoluteness.

Ulle Endriss 6



Automated Reasoning 2 COMSOC 2023

Strategyproofness

SP says: for any voter i, any (truthful) profile r, any of its i-variants r′,

any alternative x, any alternative y dispreferred to x by i in r, either

y (bad) loses in r (truthful) or x (good) loses in r′ (manipulated).

ϕsp =
∧
i

∧
r

 ∧
r′ ∈ i-var(r)

∧
x

 ∧
y | x�r

i y

¬pr,y ∨ ¬pr′,x


def cnfStrategyProof():

cnf = []

for i in allVoters():

for r1 in allProfiles():

for r2 in profiles(lambda r2 : iVariants(i,r1,r2)):

for x in allAlternatives():

for y in alternatives(lambda y : prefers(i,x,y,r1)):

cnf.append([negLiteral(r1,y), negLiteral(r2,x)])

return cnf

Ulle Endriss 7



Automated Reasoning 2 COMSOC 2023

Surjectivity

Surjectivity really is a conjunction of disjunctions of conjunctions: for

all alternatives x, there is a profile r where x wins and all others lose.

Could translate to CNF. But given resoluteness, this is easier:

ϕsur =
∧
x

(∨
r

pr,x

)

def cnfSurjective():

cnf = []

for x in allAlternatives():

cnf.append([posLiteral(r,x) for r in allProfiles()])

return cnf

Ulle Endriss 8



Automated Reasoning 2 COMSOC 2023

Nondictatorship

A resolute rule is nondictatorial if for every voter i there is a profile r

where top(i) loses (so: some alternative x equal to top(i) loses).

ϕnd =
∧
i

∨
r

 ∨
x | x=topr(i)

¬pr,x


Remark: Instead of the last disjunction, we could just write pr,topr(i).

The chosen encoding (no function in subscript) arguably is cleaner.

def cnfNonDictatorial():

cnf = []

for i in allVoters():

clause = []

for r in allProfiles():

for x in alternatives(lambda x : top(i,x,r)):

clause.append(negLiteral(r,x))

cnf.append(clause)

return cnf

Ulle Endriss 9



Automated Reasoning 2 COMSOC 2023

Running the SAT Solver

We need to determine whether the master formula is satisfiable:

ϕgs = ϕat-least-one ∧ ϕres ∧ ϕsp ∧ ϕsur ∧ ϕnd

Btw: this is a conjunction of 1,445 clauses (using 108 variables).

The method solve() provides access to a SAT solver.

Let’s see what happens:

>>> cnf = ( cnfAtLeastOne() + cnfResolute() + cnfStrategyProof()

... + cnfSurjective() + cnfNonDictatorial() )

>>>> len(cnf)

1445

>>> solve(cnf)

’UNSATISFIABLE’

So ϕgs really is unsatisfiable! Thus: G-S for n=2 and m=3 is true! X

Discussion: Does this count? Do we believe in computer proofs?

Ulle Endriss 10



Automated Reasoning 2 COMSOC 2023

Computer Proofs

We can proof-read our Python script just like we would proof-read a

mathematical proof. And we can use multiple SAT solvers and check

they agree. So we can have some confidence in the result.

Missing Pieces

But some pieces are still missing:

• Does the theorem generalise to arbitrary n > 2 and m > 3?

Intuitively almost obvious, though technically not that easy.

Basic idea: induction over both n and m

• Why does the theorem hold? This proof does not tell us.

But SAT technology can help here as well: MUS extraction

Ulle Endriss 11



Automated Reasoning 2 COMSOC 2023

Completing the Proof of the G-S Theorem

Recall the theorem we want to prove:

Gibbard-Satterthwaite Theorem: For m > 3 alternatives, no

resolute voting rule is strategyproof, surjective, and nondictatorial.

Instead we proved:

Base Case Lemma: For n=2 voters and m=3 alternatives, no

resolute voting rule is strategyproof, surjective, and nondictatorial.

To complete the proof of G-S we require two further lemmas:

• impossible for n>2 and m=3 ⇒ impossible for n+1 and m=3

• impossible for n>2 and m=3 ⇒ impossible for n and any m>3

Proving these lemmas is tricky but possible (↪→ next). A write-up can

be found in the PhD thesis of Pingzhong Tang (2010).

P. Tang. Computer-aided Theorem Discovery: A New Adventure and its Applica-

tion to Economic Theory. PhD thesis. HKUST, 2010.

Ulle Endriss 12



Automated Reasoning 2 COMSOC 2023

Preparation

Recall that we have already seen a (fairly simple) proof of the fact that

any resolute voting rule that is surjective and strategyproof must also

be Paretian. We will use this fact for the two proofs that follow.

For the second proof, we also will make use of the fact that the G-S

axioms entail independence, for which we saw another simple proof.

For each lemma, we prove the contrapositive of our first statement . . .

Ulle Endriss 13



Automated Reasoning 2 COMSOC 2023

First Lemma: Induction on Voters
Lemma 1 If there exists a resolute voting rule for n+ 1 > 2 voters and

three alternatives that is surjective, strategyproof, and nondictatorial, then

there also exists such a rule for n voters and three alternatives.

Proof sketch: Let A = {a, b, c} and N = {1, . . . , n}. Now take any resolute

rule F : L(A)n+1 → A that is surjective, SP, and nondictatorial.

For every i ∈ N , define Fi : L(A)n → A via Fi(R) = F (R, Ri). And check:

• All Fi are surjective: Immediate from F being Paretian. X

• All Fi are SP: First, no j 6= i can manipulate, given that F is SP.

Now suppose voter i can manipulate in R using R′i. Thus, i prefers

F (R−i, R
′
i, R
′
i) to F (R−i, Ri, Ri). But then i also must prefer

F (R−i, R
′
i, R
′
i) to F (R−i, R

′
i, Ri) or F (R−i, R

′
i, Ri) to F (R−i, Ri, Ri).

But F would be manipulable in both cases (contradiction!) X

• At least one Fi is nondictatorial : Assume all Fi are dictatorial. If all Fi

have same dictator, F is dictatorial (contradiction!). Otherwise, must

have dict(Fi) = i, meaning F elects top(Rn+1) whenever someone else

submits the same ballot. But then F is manipulable (contradiction!). X

Ulle Endriss 14



Automated Reasoning 2 COMSOC 2023

Second Lemma: Reduction of Alternatives

Lemma 2 If there exists a resolute voting rule for n voters and m > 3

alternatives that is surjective, strategyproof, and nondictatorial, then there

also exists such a rule for n voters and three alternatives.

Proof sketch: Let m > 3 and let A = {a, b, c, a4, . . . , am}. Take any

resolute rule F : L(A)n → A that is surjective, SP, and nondictatorial.

For any R ∈ L({a,b,c}), let R+ = R(1)�R(2)�R(3)�a4�· · ·�am.

Now define a rule F a,b,c : L({a,b,c})n → {a,b,c} for three alternatives:

F a,b,c(R1, . . . , Rn) = F (R+
1 , . . . , R

+
n )

F a,b,c is well-defined (really maps to {a,b,c}) and surjective, because F is

Paretian. F a,b,c also is immediately seen to be SP (given that F is).

Now show that {a, b, c} ⊆ A can be selected so that F a,b,c is nondictatorial.

If all subsets {x, y, z} yield dictatorial rules, we obtain a contradiction:

By independence, if F x,y,z has dictator i, that i is a “local dictator” for

{x, y, z} under F . So F has some local dictator for every triple. But these

local dictators cannot be distinct voters, so F in fact must be dictatorial. X

Ulle Endriss 15



Automated Reasoning 2 COMSOC 2023

Critique of the Approach

Proving such lemmas can be quite difficult, almost as difficult as

proving the theorem itself. This is a valid concern. But:

• A successful proof for a special case with small n and m provides

strong evidence for (though no formal proof of) a general result.

Indeed: The G-S Theorem is surprising. Our lemmas are not at all!

Can use this as a heuristic to decide what to investigate further.

• Sometimes you can prove a general reduction lemma: if the

axioms meet certain conditions, every impossibility generalises

from small to large scenarios (see examples cited below).

C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social

Choice Theory: Ranking Sets of Objects. Journal of AI Research, 2011.

U. Endriss. Analysis of One-to-One Matching Mechanisms via SAT Solving: Im-

possibilities for Universal Axioms. AAAI-2020.

Ulle Endriss 16



Automated Reasoning 2 COMSOC 2023

Summary

We completed the proof of the Gibbard-Satterthwaite Theorem:

• base case corresponds to an unsatisfiable formula

• general case can be settled using an inductive argument

In methodological terms, we understood that, at least in principle, any

axiom can be expressed in propositional logic; and we saw that, at the

very least, some common axioms can be expressed rather easily.

What next? Understanding the impossibility through MUS extraction.

Ulle Endriss 17


