Homework \#4

Deadline: Thursday, 30 November 2023, 19:00

Exercise 1 (10 points)
We saw in class that there is no resolute voting rule for $n, m=2,2$ that is both anonymous and neutral. Suppose you don't remember the proof.

Find a proof for this fact using the SAT approach:

- Encode anonymity and neutrality in CNF.
- Verify that the CNF is unsatisfiable and extract an MUS.
- Interpret the MUS to obtain a human-readable proof.

Then check what happens for the following three cases:

- $n, m=2,3$
- $n, m=3,2$
- $n, m=3,3$

How many rules do you find (if any)? Is this what you expected?

