Computational Social Choice 2021
 Ulle Endriss
 Institute for Logic, Language and Computation
 University of Amsterdam

[http://www.illc.uva.nl/~ulle/teaching/comsoc/2021/]

Plan for Today

We first are going to review a few more voting rules and remark on some surprising shortcomings of what look like reasonable rules.

To help us choose a good voting rule, we then discuss an approach to characterising rules using the so-called axiomatic method.

For full details see Zwicker (2016).
W.S. Zwicker. Introduction to the Theory of Voting. In F. Brandt et al. (eds.), Handbook of Computational Social Choice. CUP, 2016.

Preview: Some Axioms

We are going to use these axioms to highlight certain shortcomings of some of the voting rules we have seen and are going to see:

- Participation Principle: It should be in the best interest of voters to participate; voting truthfully should be no worse than abstaining.
- Pareto Principle: There should be no alternative that every voter strictly prefers to the alternative selected by the voting rule.
- Condorcet Principle: If there is an alternative that is preferred to every other alternative by a majority of voters, then it should win.

Reminder: The Model

Fix a finite set $A=\{a, b, c, \ldots\}$ of alternatives, with $|A|=m \geqslant 2$.
Let $\mathcal{L}(A)$ denote the set of all strict linear orders R on A. We use elements of $\mathcal{L}(A)$ to model (true) preferences and (declared) ballots.

Each member i of a finite set $N=\{1, \ldots, n\}$ of voters supplies us with a ballot R_{i}, giving rise to a profile $\boldsymbol{R}=\left(R_{1}, \ldots, R_{n}\right) \in \mathcal{L}(A)^{n}$.
A voting rule (or social choice function) for N and A selects (ideally) one or (in case of a tie) more winners for every such profile:

$$
F: \mathcal{L}(A)^{n} \rightarrow 2^{A} \backslash\{\emptyset\}
$$

If $|F(\boldsymbol{R})|=1$ for all profiles \boldsymbol{R}, then F is called resolute.

Reminder: Some Voting Rules

So far we saw the following voting rules:

- Positional scoring rules: Borda, plurality, antiplurality, k-approval
- Based on majority graph: Copeland, Slater
- Based on weighted majority graph: Kemeny, ranked-pairs, (Borda)
- Plurality with runoff (generalisation to follow)

Runoff Methods: Single Transferable Vote \& Variants

STV (used, e.g., in Australia) works in stages:

- If some alternative is top for an absolute majority, then it wins.
- Otherwise, the alternative ranked at the top by the fewest voters (the plurality loser) gets eliminated from the race.
- Votes for eliminated alternatives get transferred: delete removed alternatives from ballots and 'shift' rankings (i.e., if your 1st choice got eliminated, then your 2nd choice becomes 1st).

Various options for how to deal with ties during elimination.
In practice, voters need not be required to rank all alternatives (non-ranked alternatives are assumed to be ranked lowest).

For three alternatives, STV and plurality with runoff coincide.
Variants: Coombs, Baldwin, Nanson (different elimination criteria)

The No-Show Paradox

Under plurality with runoff (and thus under STV), it may be better to abstain than to participate and vote for your favourite alternative!

$$
\begin{array}{ll}
25 \text { voters: } & a \succ b \succ c \\
46 \text { voters: } & c \succ a \succ b \\
24 \text { voters: } & b \succ c \succ a
\end{array}
$$

Given these voter preferences, b gets eliminated in the first round, and c beats a 70:25 in the runoff.

Now suppose two voters from the first group abstain:

$$
\begin{array}{ll}
23 \text { voters: } & a \succ b \succ c \\
46 \text { voters: } & c \succ a \succ b \\
24 \text { voters: } & b \succ c \succ a
\end{array}
$$

Now a gets eliminated, and b beats c 47:46 in the runoff.
P.C. Fishburn and S.J Brams. Paradoxes of Preferential Voting. Mathematics Magazine, 1983.

Cup Rules via Voting Trees

We can define a voting rule via a binary tree, with the alternatives labelling the leaves, and an alternative progressing to a parent node if it beats its sibling in a majority contest.

Two examples for such cup rules and a possible profile of ballots:
(1)
$\mathrm{a} \succ \mathrm{b} \succ \mathrm{c}$
$\mathrm{b} \succ \mathrm{c} \succ \mathrm{a}$
$c \succ \mathrm{a} \succ \mathrm{b}$

Rule (1): c wins
Rule (2): a wins

Cup Rules and the Pareto Principle

The (weak) Pareto Principle requires that we should never elect an alternative that is strictly dominated in every voter's ballot.

Cup rules do not always satisfy this most basic of principles!

What happened? Note how this 'embeds' the Condorcet Paradox, with every occurrence of c being replaced by $\mathrm{c} \succ \mathrm{d} \ldots$

Condorcet Extensions

An alternative that beats every other alternative in pairwise majority contests is called a Condorcet winner. Sometimes there is no CW. The Condorcet Principle says that, if it exists, only the CW should win. Voting rules that satisfy this principle are called Condorcet extensions. Exercise: Show that Copeland, Slater, Kemeny, and cup rules are CEs.

Two further Condorcet extensions:

- Young: Elect alternative x that minimises the number of voters we need to remove before x becomes the Condorcet winner.
- Dodgson: Elect alternative x that minimises the number of swaps of adjacent alternatives in the profile we need to perform before x becomes the Condorcet winner. (Note difference to Kemeny!)

Trivia: Dodgson is also known as Lewis Carroll (Alice in Wonderland).

Positional Scoring Rules and the Condorcet Principle

Consider this example with three alternatives and seven voters:

$$
\begin{array}{ll}
3 \text { voters: } & a \succ b \succ c \\
2 \text { voters: } & b \succ c \succ a \\
\text { 1 voter: } & b \succ a \succ c \\
\text { 1 voter: } & \\
c \succ a \succ b
\end{array}
$$

So a is the Condorcet winner: a beats both b and c (with 4 out of 7). But any positional scoring rule makes b win (because $s_{1} \geqslant s_{2} \geqslant s_{3}$):

$$
\begin{array}{ll}
a: & 3 \cdot s_{1}+2 \cdot s_{2}+2 \cdot s_{3} \\
b: & 3 \cdot s_{1}+3 \cdot s_{2}+1 \cdot s_{3} \\
c: & 1 \cdot s_{1}+2 \cdot s_{2}+4 \cdot s_{3}
\end{array}
$$

Thus, no positional scoring rule for three (or more) alternatives can possibly satisfy the Condorcet Principle.

Fishburn's Classification

Can classify voting rules on the basis of the information they require.
The best known such classification is due to Fishburn (1977):

- C1: Winners can be computed from the majority graph alone. Examples: Copeland, Slater
- C2: Winners can be computed from the weighted majority graph (but not from the majority graph alone).
Examples: Kemeny, ranked-pairs, Borda
- C3: All other voting rules. Examples: Young, Dodgson, STV

Remark: Fishburn originally intended this for Condorcet extensions only, but the concept also applies to all other voting rules.
P.C. Fishburn. Condorcet Social Choice Functions. SIAM Journal on Applied Mathematics, 1977.

Nonstandard Ballots

We defined voting rules over profiles of strict linear orders (even if some rules, e.g., plurality, don't use all information). Other options:

- Approval voting: You can approve of any subset of the alternatives. The alternative with the most approvals wins.
- Even-and-equal cumulative voting: You vote as for AV, but 1 point gets split evenly amongst the alternatives you approve.
- Range voting: You vote by dividing 100 points amongst the alternatives as you see fit (as long every share is an integer).
- Majority judgment: You award a grade to each of the alternatives ('excellent', 'good', etc.). Highest median grade wins.

The most important of these is approval voting.
Remark: k-approval and approval voting are very different rules!

Characterisation via Axiomatic Method

So many different voting rules! How do you choose?
One approach is to use the axiomatic method to identify voting rules of normative appeal. We will see one example for a classical result.

Axioms: Anonymity and Neutrality

Two basic fairness requirements for a voting rule F :

- F is anonymous if $F\left(R_{1}, \ldots, R_{n}\right)=F\left(R_{\pi(1)}, \ldots, R_{\pi(n)}\right)$ for any profile $\left(R_{1}, \ldots, R_{n}\right)$ and any permutation $\pi: N \rightarrow N$.
- F is neutral if $F(\pi(\boldsymbol{R}))=\pi(F(\boldsymbol{R}))$ for any profile \boldsymbol{R} and any permutation $\pi: A \rightarrow A$ (with π extended to profiles and sets of alternatives in the natural manner).

In other words:

- Anonymity is symmetry w.r.t. voters.
- Neutrality is symmetry w.r.t. alternatives.

Consequences of Axioms

For this slide only, let us restrict attention to voting rules for scenarios with just two voters $(n=2)$ and two alternatives $(m=2)$.

Exercise: Show that there exists no resolute voting rule that is 'fair' in the sense of being both anonymous and neutral.

Exercise: But there still are a couple of irresolute voting rules that are both anonymous and neutral. Give some examples!

Axiom: Positive Responsiveness

Notation: Write $N_{x \succ y}^{R}=\left\{i \in N \mid(x, y) \in R_{i}\right\}$ for the set of voters who rank alternative x above alternative y in profile \boldsymbol{R}.

A (not necessarily resolute) voting rule satisfies positive responsiveness if, whenever some voter raises a (possibly tied) winner x^{\star} in her ballot, then x^{\star} will become the unique winner. Formally:
F is positively responsive if $x^{\star} \in F(\boldsymbol{R})$ implies $\left\{x^{\star}\right\}=F\left(\boldsymbol{R}^{\prime}\right)$ for any alternative x^{\star} and any two distinct profiles \boldsymbol{R} and \boldsymbol{R}^{\prime} s.t. $N_{x^{\star} \succ y}^{\boldsymbol{R}} \subseteq N_{x^{\star} \succ y}^{\boldsymbol{R}^{\prime}}$ and $N_{y \succ z}^{\boldsymbol{R}}=N_{y \succ z}^{\boldsymbol{R}^{\prime}}$ for all $y, z \in A \backslash\left\{x^{\star}\right\}$.

Thus, this is a monotonicity requirement (we'll see others later on).

May's Theorem

When there are only two alternatives, then all the voting rules we have seen coincide with the simple majority rule. Good news:

Theorem 1 (May, 1952) A voting rule for two alternatives satisfies anonymity, neutrality, and positive responsiveness if and only if that rule is the simple majority rule.

This provides a good justification for using this rule (arguing in favour of 'majority' directly is harder than arguing for anonymity etc.).
K.O. May. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decisions. Econometrica, 1952.

Proof Sketch

Clearly, the simple majority rule satisfies all three properties. \checkmark
Now for the other direction:
Assume the number of voters is odd \leadsto no ties. (other case: similar)
There are two possible ballots: $a \succ b$ and $b \succ a$.
Anonymity \leadsto only number of ballots of each type matters.
Consider all possible profiles \boldsymbol{R}. Distinguish two cases:

- Whenever $\left|N_{a \succ b}^{R}\right|=\left|N_{b \succ a}^{R}\right|+1$, then only a wins. By PR, a wins whenever $\left|N_{a \succ b}^{R}\right|>\left|N_{b \succ a}^{R}\right|$. By neutrality, b wins otherwise. But this is just what the simple majority rule does. \checkmark
- There exist a profile \boldsymbol{R} with $\left|N_{a \succ b}^{R}\right|=\left|N_{b \succ a}^{R}\right|+1$, yet b wins. Suppose one a-voter switches to b, yielding \boldsymbol{R}^{\prime}. By $P R$, now only b wins. But now $\left|N_{b \succ a}^{R^{\prime}}\right|=\left|N_{a \succ b}^{R^{\prime}}\right|+1$, which is symmetric to the earlier situation, so by neutrality a should win. Contradiction. \checkmark

Young's Theorem

Another seminal result (which we won't discuss in detail here) is known as Young's Theorem. It provides a characterisation of the PSR's.

It involves an axiom we have not yet seen:
F satisfies reinforcement if, whenever we split the electorate into two groups and some alternative wins for both groups, then that alternative also wins for the full electorate:

$$
F(\boldsymbol{R}) \cap F\left(\boldsymbol{R}^{\prime}\right) \neq \emptyset \Rightarrow F\left(\boldsymbol{R} \oplus \boldsymbol{R}^{\prime}\right)=F(\boldsymbol{R}) \cap F\left(\boldsymbol{R}^{\prime}\right)
$$

Young showed that a rule F is a positional scoring rule (with a scoring vector that need not be decreasing) iff it satisfies anonymity, neutrality, reinforcement, and a technical condition known as continuity.
H.P. Young. Social Choice Scoring Functions. SIAM Journal on Applied Mathematics, 28(4):824-838, 1975.

Other Approaches to Classifying Voting Rules

Attractive axiomatisations of several other voting rules exist as well.
But there are also other approaches we can take to classify rules:

- Informational requirements (\hookrightarrow Fishburn's classification)
- Computational requirements. Examples:
- Borda: clearly tractable (straightforward polynomial algorithm)
- STV: complexity seems to depend on how we break ties
- Dodgson: looks highly intractable (and it is!)
- Distance-based rationalisation of voting rules. Examples:
- Dodgson: return CW in (swap-distance)-closest profile with CW
- Borda: return unanimous winner in closest profile with UW
- Epistemic characterisation: voting as truth-tracking (\hookrightarrow later)

Summary

We have by now seen a very large number of voting rules:

- they explore different intuitions about how voting 'should' work and they seem to sometimes suffer from counterintuitive problems
- they differ in view of the profile information they require
- they differ in view of their computational requirements

We then saw an example for how to characterise a voting rule as the only rule that satisfies certain axioms: May's Theorem.

What next? More applications of the axiomatic method.

