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Plan for Today

We have already seen that voters will sometimes have an incentive not

to truthfully reveal their preferences when they vote.

Today we shall discuss two important theorems that show that this

kind of strategic manipulation is impossible to avoid:

• the Gibbard-Satterthwaite Theorem [1973/1975]

• the Duggan-Schwartz Theorem [2000]

The latter generalises the former by considering irresolute voting

procedures, where voters have to strategise wrt. sets of winners.

This raises a more general question, and we will spend the final part of

the lecture on an introduction to a subfield of SCT concerned with the

problem of extending preferences over objects to sets of objects.

Ulle Endriss 2

Strategic Manipulation COMSOC 2010

Example

Let’s have another look at our favourite example:

49%: Bush ≻ Gore ≻ Nader

20%: Gore ≻ Nader ≻ Bush

20%: Gore ≻ Bush ≻ Nader

11%: Nader ≻ Gore ≻ Bush

Under the plurality rule, the Nader supporters could manipulate:

pretend they like Gore best and improve the result.
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Ballots and Preferences

We have to distinguish a voter’s ballot and her true preferences:

• We continue to stipulate that a ballot should be a linear order

over the alternatives in X , i.e., ballots are elements of L(X ).

[More generally, we could introduce a ballot language B(X ).]

• We shall also assume that each voter has a preference order over

the alternatives in X . We shall assume that these are linear orders

on X as well, i.e., also preferences are elements of L(X ).

[Or we could work with a class of preference structures P(X ).]
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Truthfulness, Manipulation, Strategy-Proofness

For now, we will only deal with resolute voting procedures.

Let ≻i be the true preference of voter i and let bi be the ballot of i.

Some important terminology:

• A voter i is said to vote truthfully if her ballot bi coincides with

her actual preference order ≻i.

• A voter i is said to manipulate (successfully) if she does not vote

truthfully and thereby improves the outcome (wrt. ≻i).

• A resolute voting procedure F is called immune to manipulation

(or strategy-proof ) if there exist no profile b = (b1, . . . , bn) and no

voter i such that F (b) ≻i F (b1, . . . , bi−1,≻i, bi+1, . . . , bn) — with

≻i lifted from alternatives to singletons in the natural manner.

In other words: under a strategy-proof voting procedure no voter

will ever have an incentive to misrepresent her preferences.
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The Gibbard-Satterthwaite Theorem

Recall: a resolute voting procedure F is surjective if for any alternative

x there exists a ballot profile b such that F (b) = {x}

Theorem 1 (Gibbard-Satterthwaite) Any resolute voting procedure

for > 3 alternatives that is surjective and strategy-proof is dictatorial.

Remarks:

• a surprising result + not applicable in case of two alternatives

• The opposite direction is clear: dictatorial ⇒ strategy-proof

• Random procedures don’t count (but might be “strategy-proof”).

A. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica,

41(4):587–601, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 10:187–217, 1975.
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Proof

We shall prove the G-S Theorem to be a corollary of the

Muller-Satterthwaite Theorem (even if, historically, G-S came first).

Recall the Muller-Satterthwaite Theorem:

• Any resolute voting procedure for > 3 alternatives that is

surjective and strongly monotonic is dictatorial .

We shall prove a lemma showing that strategy-proofness implies strong

monotonicity (and we’ll be done). X

For short proofs of G-S, see also Barberà (1983) and Benôıt (2000).

S. Barberà. Strategy-Proofness and Pivotal Voters: A Direct Proof the Gibbard-

Satterthwaite Theorem. International Economic Review, 24(2):413–417, 1983.

J.-P. Benôıt. The Gibbard-Satterthwaite Theorem: A Simple Proof. Economic

Letters, 69(3):319–322, 2000.
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Strategy-Proofness implies Strong Monotonicity

Lemma 1 Any resolute voting procedure that is strategy-proof must

also be strongly monotonic.

• SP: no incentive to vote untruthfully

• SM: F (b) = {x} ⇒ F (b′) = {x} if ∀y : b(x ≻ y) ⊆ b′(x ≻ y)

Proof: We’ll prove the contrapositive. So assume F is not SM.

So there exist alternatives x, x′ with x 6= x′ and profiles b, b′ such that:

• b(x ≻ y) ⊆ b′(x ≻ y) for all alternatives y, including x′ (⋆)

• F (b) = {x} and F (b′) = {x′}

Moving from b to b′, there must be a first voter affecting the winner.

So w.l.o.g., may assume b and b′ differ only wrt. voter i. Two cases:

• i ∈ b′(x ≻ x′): if i’s true preferences are as in b′, she can benefit

from voting instead as in b ⇒  [SP]

• i 6∈ b′(x ≻ x′) ⇒(⋆) i 6∈ b(x ≻ x′) ⇒ i ∈ b(x′ ≻ x): if i’s true

pref’s are as in b, she can benefit from voting as in b′ ⇒  [SP]
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Shortcomings of Resolute Voting Procedures

The Gibbard-Satterthwaite Theorem (like Muller-Satterthwaite, but

unlike Arrow) only applies to resolute voting procedures.

But the restriction to resolute procedures is problematic:

• No “natural” voting procedure is resolute (w/o tie-breaking rule).

• We can get very basic impossibilities for resolute procedures:

Fact: No resolute voting procedure for 2 voters and 2 alternatives

can be both anonymous and neutral .

Proof: Consider the case where the voters’ rankings differ . . . X

We therefore should really be analysing irresolute voting procedures . . .
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Manipulability wrt. Psychological Assumptions

To analyse manipulability when we might get a set of winners, we need

to make assumptions on how voters rank sets of alternatives, e.g.:

• A voter is an optimist if she prefers X over Y whenever she

prefers her favourite x ∈ X over her favourite y ∈ Y .

• A voter is an pessimist if she prefers X over Y whenever she

prefers her least preferred x ∈ X over her least preferred y ∈ Y .

Now we can speak about manipulability by certain types of voters:

• F is called immune to manipulation by optimistic voters if

no optimistic voter can ever benefit from voting untruthfully.

• F is called immune to manipulation by pessimistic voters if

no pessimistic voter can ever benefit from voting untruthfully.
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Other Axioms

Let F be a voting procedure.

• Recall: a dictator can impose a unique winner. A variation:

– A voter is a weak dictator (or a nominator) for F if her

top-ranked alternative is always one of the winners under F .

– F is called weakly dictatorial if it has a weak dictator;

otherwise F is called strongly nondictatorial .

• Recall: F is nonimposed if for any alternative x there exists a

ballot profile b such that F (b) = {x}.
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The Duggan-Schwartz Theorem

There are several extensions of the Gibbard-Satterthwaite Theorem for

irresolute voting procedure. The Duggan-Schwartz Theorem is usually

regarded as the strongest of these results.

Our statement of the theorem follows Taylor (2002):

Theorem 2 (Duggan and Schwartz, 2000) Any voting procedure

for > 3 alternatives that is nonimposed and immune to manipulation

by both optimistic and pessimistic voters is weakly dictatorial.

Proof: Omitted.

Note that the Gibbard-Satterthwaite Theorem is a direct corollary.

J. Duggan and T. Schwartz. Strategic Manipulation w/o Resoluteness or Shared

Beliefs: Gibbard-Satterthwaite Generalized. Soc. Choice Welf., 17(1):85–93, 2000.

A.D. Taylor. The Manipulability of Voting Systems. The American Mathematical

Monthly, 109(4)321–337, 2002.
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Digression: Ranking Sets of Objects

Recall: to analyse strategic behaviour for irresolute voting procedures

we had to make assumptions on how voters rank sets of winners.

That’s an interesting problem (and a subfield of SCT) in its own right:

• Given: preference order � declared over elements of set X .

• Question: what can we say about the corresponding preference

order �̂ over nonempty subsets of X ?

– Answer: in general, nothing

– But what are reasonable principles for extending preferences?

Besides manipulation in voting theory, other applications include

decision making under complete uncertainty.

S. Barberà, W. Bossert, and P.K. Pattanaik. Ranking sets of objects. In Handbook

of Utility Theory, volume 2. Kluwer Academic Publishers, 2004.
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Formal Framework

Three components:

• finite set X of alternatives (options, candidates, . . . )

• total order � on X (preferences over alternatives)

• weak order �̂ on 2X \{∅} (preferences over nonempty sets)
2

6

4

preorder: reflexive, transitive

weak order: reflexive, transitive, complete

total order: reflexive, transitive, complete, antisymmetric

linear order: strict part of total order

3

7

5

Some questions you may ask:

• If we only know X and �, what properties of �̂ should we

reasonably be able to infer?

• What are interesting axioms to impose on structures 〈X ,�, �̂〉?
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Examples

(1) You know a ≻ b ≻ c.

Can you infer {a} ≻̂ {b, c}?

(2) You know a ≻ b ≻ c.

Can you infer anything regarding {b} and {a, c}?

(3) You know a ≻ b ≻ c ≻ d.

Can you infer {a, b, d} �̂ {a, c, d}?

Interpretations

Note that there are different possible interpretations to such sets:

(A) You will get one of the elements, but cannot control which.

(B) You can choose one of the elements.

(C) You will get the full set.
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Kelly Principle

The extension axiom:

(EXT) {a} ≻̂ {b} if a ≻ b

Two further axioms:

(MAX) {max(A)} �̂ A [max(A) = best element in A wrt. ≻]

(MIN) A �̂ {min(A)} [min(A) = worst element in A wrt. ≻]

The Kelly Principle = (EXT) + (MAX) + (MIN). That is:

• A ≻̂ B if all elements in A are strictly better than all those in B

• A �̂ B if all elements in A are at least as good as all those in B

J.S. Kelly. Strategy-Proofness and Social Choice Functions without Single-

Valuedness. Econometrica, 45(2):439–446, 1977.
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Gärdenfors Principle

Two axioms:

(GF1) A ∪ {b} ≻̂ A if b ≻ a for all a ∈ A

(GF2) A ≻̂ A ∪ {b} if a ≻ b for all a ∈ A

The Gärdenfors Principle = (GF1) + (GF2):

If I can get from A to B by means of a (nonempty) sequence

of steps, each involving deleting the best element or adding a

new worst element, then A is strictly better than B.

The Gärdenfors Principle entails the Kelly Principle, but not vice versa.

P. Gärdenfors. Manipulation of Social Choice Functions. Journal of Economic

Theory. 1392):217–228, 1976.
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Independence

The independence axiom:

(IND) A ∪ {c} �̂ B ∪ {c} if A ≻̂ B and c 6∈ A ∪ B

That is: if you (strictly) prefer A over B, then that preference should

not get inverted when we add a new object c to both sets.
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The Kannai-Peleg Theorem

The 1984 paper by Yakar Kannai and Bezalel Peleg is considered the

seminal contribution to the axiomatic study of ranking sets of objects.

Theorem 3 (Kannai and Peleg, 1984) If |X | > 6, then no weak

order �̂ satisfies both the Gärdenfors Principle and independence.

Probably the first paper treating the problem of preference extension

as a problem in its own right, from an axiomatic perspective.

• For Kelly and Gärdenfors (and others), the problem has been more

of a side issue (when studying manipulation in voting).

• Work on the problem of ranking sets of objects itself published

before 1984 is descriptive rather than axiomatic.

Y. Kannai and B. Peleg. A Note on the Extension of an Order on a Set to the

Power Set. Journal of Economic Theory, 32(1):172–175, 1984.
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Lemma

Recall the axioms:

(GF1) A ∪ {b} ≻̂ A if b ≻ a for all a ∈ A

(GF2) A ≻̂ A ∪ {b} if a ≻ b for all a ∈ A

}

Gärdenfors Principle

(IND) A ∪ {c} �̂ B ∪ {c} if A ≻̂ B and c 6∈ A ∪ B

Lemma 2 Gärdenfors + (IND) entails A ∼̂ {max(A), min(A)}.

Proof:

• If |A| 6 2, then A = {max(A), min(A)}. X

• If |A| > 2:

– {max(A)} ≻̂ A \{min(A)} by repeated application of (GF2),

and thus {max(A), min(A)} �̂ A by (IND).

– A \{max(A)} ≻̂ {min(A)} by repeated application of (GF1),

and thus A �̂ {max A, min(A)} by (IND).

Hence, A ∼̂ {max(A), min(A)}. X
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Proof of the Kannai-Peleg Theorem

Theorem: If |X | > 6, then no weak order �̂ satisfies both the

Gärdenfors Principle and independence.

Proof: Suppose a6 ≻ a5 ≻ a4 ≻ a3 ≻ a2 ≻ a1.

Claim: {a2, a5} �̂ {a4} (∗)

Proof of claim: if not, then {a4} ≻̂ {a2, a5}, as �̂ is complete

⇒ {a1, a4} �̂ {a1, a2, a5} by (IND)

⇒ {a1, a2, a3, a4} �̂ {a1, a2, a3, a4, a5} by Lemma ⇒  [GP]

Hence: {a2, a5} ≻̂ {a3} from (∗) and {a4} ≻̂ {a3} [GP]

⇒ {a2, a5, a6} �̂ {a3, a6} by (IND)

⇒ {a2, a3, a4, a5, a6} �̂ {a3, a4, a5, a6} by Lemma ⇒  [GP]

Done. X

Remark: Note that there are preorders satisfying all axioms, e.g.:

A �̂ B :⇔ max(A) � max(B) and min(A) � min(B)
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Automated Theorem Search

Recall our discussion of approaches for automated verification of

theorems in social choice theory (lecture on impossibility theorems).

For ranking sets of objects, we can go one step further and even

discover new theorems automatically (Geist, 2010):

• Introduce a logic for expressing axioms (many-sorted FOL).

• Identify syntactic conditions on axioms under which any

impossibility verified for |X | = k generalises to all larger domains.

• For a fixed domain, axioms can be expressed in propositional logic.

• Impossibility for a fixed domain can be checked by a SAT solver.

• Can search over all combinations of axioms from a given set and

thereby discover all impossibilities (found 84 impossibility theorems

for 20 axioms, that apply to any domain X with |X | > 8).

C. Geist. Automated Search for Impossibility Theorems in Choice Theory: Ranking

Sets of Objects. Master of Logic thesis, ILLC, University of Amsterdam, 2010.
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Summary

In the first part of the lecture, we have seen that strategic

manipulation is a major problem in voting:

• Gibbard-Satterthwaite: only dictatorships are strategy-proof

amongst the surjective and resolute voting procedures.

• Duggan-Schwartz: similar result for irresolute procedures

Strategic manipulation is a central issue that connects social choice

theory with game theory and mechanism design.

In the second part of the lecture, we have looked closer into the

problem of ranking sets of objects, which was raised by our analysis of

strategic considerations for irresolute voting procedures:

• Kannai-Peleg : impossible to satisfy both dominance (Gärdenfors)

and independence principles (for large domains)
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What next?

While the Gibbard-Satterthwaite and the Duggan-Schwartz Theorem

show that it is impossible to always prevent strategic manipulation,

next week we’ll discuss three approaches to limit the damage:

• Domain restrictions: Can we do better if we assume that certain

(combinations of) preferences will never occur?

• Changes in the framework: To what extent do the impossibilities

depend on (possibly dispensable) details of our framework?

• Complexity barriers: Even if manipulation is possible in principle,

maybe it is sometimes (or can be made) computationally hard?
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