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Plan for Today

Fair division is the problem of dividing one or several goods amongst

two or more agents in a way that satisfies a suitable fairness criterion.

This can be considered a problem of social choice:

• A group of agents each have individual preferences over a

collective agreement (the allocation of goods to be found).

• But: in fair division preferences are often assumed to be cardinal

(utility functions) rather than ordinal (as in voting)

• And: fair division problems come with some internal structure

often absent from other social choice problems (e.g., I will be

indifferent between allocations giving me the same set of goods)

This will be a very brief introduction to fair division. For more details

and references, see my lecture notes on the topic.

U. Endriss. Lecture Notes on Fair Division. ILLC, University of Amsterdam, 2010.
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Fair Division: Formal Framework

• Let N = {1, . . . , n} be a set of agents (or players, or individuals)

who need to share several goods (or resources, items, objects).

• An allocation A is a mapping of agents to bundles of goods.

• Each agent i ∈ N has a utility function ui (or valuation function),

mapping allocations to the reals, to model their preferences.

– Typically, ui first defined on bundles, so: ui(A) = ui(A(i)).

– Discussion: preference intensity, interpersonal comparison

• An allocation A gives rise to a utility vector 〈u1(A), . . . , un(A)〉.

• Sometimes, we are going to define social preference structures

directly over utility vectors u = 〈u1, . . . , un〉 (elements of R
n),

rather than speaking about the allocations generating them.
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Pareto Efficiency

Allocation A is Pareto dominated by allocation A′ if ui(A) 6 ui(A
′)

for all agents i ∈ N and this inequality is strict in at least one case.

An allocation A is Pareto efficient if there is no other feasible

allocation A′ such that A is Pareto dominated by A′.

The idea goes back to Vilfredo Pareto (Italian economist, 1848–1923).

Discussion:

• Pareto efficiency is very often considered a minimum requirement

for any reasonable allocation. It is a very weak criterion.

• Only the ordinal content of preferences is needed to check Pareto

efficiency (no preference intensity, no interpersonal comparison).
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Collective Utility Functions

A collective utility function (CUF) is a function SW : R
n → R

mapping utility vectors to the reals. Three important examples:

• the utilitarian CUF ranking allocations by total utility

SWutil(u) =
∑

i∈N

ui

• the egalitarian CUF that ties social welfare to the poorest agent

SWegal(u) = min{ui | i ∈ N}

• the Nash CUF that tries to balance fairness and efficiency

SWnash(u) =
∏

i∈N

ui

H. Moulin. Axioms of Cooperative Decision Making. Econometric Society Mono-

graphs, Cambridge University Press, 1988.
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Social Welfare Orderings

Each CUF defines a social welfare ordering (SWO) �, a binary relation

on R
n that is reflexive, transitive and complete.

We can also define SWOs directly. The most important example is the

leximin ordering �ℓ, extending the egalitarian principle:

• u ≻ℓ v if, for some k, the k lowest elements of u and v coincide

and the k+1st element of u is greater than the k+1st element of v.
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Axiomatic Method

Similarly to Arrovian social choice theory, there are a lot of interesting

results regarding axiomatisations of certain social welfare orderings.

Some of the axioms used in the literature:

• An SWO � is zero independent if u � v entails

(u + w) � (v + w) for all u, v, w ∈ R
n.

• An SWO � is independent of the common utility pace if u � v

entails f(u) � f(v) for all u, v ∈ R
n and for every increasing

bijection f : R → R. (Example: taxes)

• An SWO satisfies the Pigou-Dalton Principle if u � v whenever u

can be reached from v by means of an inequality-reducing yet

mean-preserving transfer of utility between two agents.

H. Moulin. Axioms of Cooperative Decision Making. Econometric Society Mono-

graphs, Cambridge University Press, 1988.
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Envy-Freeness

An allocation is called envy-free if no agent would rather have one of

the bundles allocated to any of the other agents:

ui(A(i)) > ui(A(j))

Recall that A(i) is the bundle allocated to agent i in allocation A.

Remark: Envy-free allocations do not always exist (at least not if we

require either complete or Pareto efficient allocations).
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Degrees of Envy

As we cannot always ensure envy-free allocations, another approach

would be to try to reduce the degree of envy as much as possible.

• Envy between two agents:

max{ui(A(j)) − ui(A(i)), 0} or

1 if ui(A(j)) > ui(A(i)) and 0 otherwise

• Degree of envy of a single agent:

max, sum

• Degree of envy of a society:

max, sum [or indeed any CUF]

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Reaching Envy-free States

in Distributed Negotiation Settings. Proc. IJCAI-2007.
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Indivisible Goods: Formal Framework

Fixing goods to be indivisible results in a more concrete framework:

• Set of agents N = {1, . . . , n} and finite set of indivisible goods G.

• An allocation A is a partitioning of G amongst the agents in N .

Example: A(i) = {a, b} — agent i owns items a and b

• Each agent i ∈ N has got a valuation function vi : 2G → R.

Example: vi(A) = vi(A(i)) = 577.8 — agent i is pretty happy

• If agent i receives bundle B and the sum of her payments is x,

then her utility is ui(B, x) = vi(B) − x (“quasi-linear utility”).

For fair division of indivisible goods without money , assume that

payment balances are always equal to 0 (and utility = valuation).
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Preference Representation Languages

Example: Allocating 10 goods to 5 agents means 510 = 9765625

allocations and 210 = 1024 bundles for each agent to think about.

So we need to choose a good language to compactly represent

preferences over such large numbers of alternative bundles, e.g.:

• Logic-based languages (weighted goals)

• Bidding languages for combinatorial auctions (OR/XOR)

• Program-based preference representation (straight-line programs)

• CP-nets and CI-nets (for ordinal preferences)

The choice of language affects both algorithm design and complexity .

See Chevaleyre et al. (2008) for references.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Com-

binatorial Domains: From AI to Social Choice. AI Magazine, 29(4):37–46, 2008.
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Complexity Results

Before we look into the “how”, here are some complexity results:

• Checking whether an allocation is Pareto efficient is coNP-complete.

• Finding an allocation with maximal utilitarian social welfare is NP-hard.

If all valuations are modular (additive) then it is polynomial.

• Finding an allocation with maximal egalitarian social welfare is also

NP-hard, even when all valuations are modular.

• Checking whether an envy-free allocation exists is NP-complete;

checking whether an allocation that is both Pareto efficient and

envy-free exists is even Σ
p

2
-complete.

References to these results may be found in the “MARA Survey”.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multiagent Resource

Allocation. Informatica, 30:3–31, 2006.

Ulle Endriss 12



Fair Division COMSOC 2010

Negotiating Socially Optimal Allocations

In AI, one approach has been to design simple negotiation protocols

allowing agents to make deals regarding the exchange of goods and to

analyse the dynamics of those systems.

We can distinguish two perspectives:

• The local/individual view: what deals will agents make, given

their preferences? Example: myopic rationality

• The global/social view: how will the overall allocation evolve in

terms of social welfare? Example: utilitarian collective utility

One of the main questions is whether negotiation will converge to a

social optimum, or under what circumstances it will.

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal Allo-

cations of Resources. Journal of AI Research, 25:315–348, 2006.
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Cake-Cutting: Formal Framework

“Cake-cutting” is the problem of fair division of a single divisible (and

heterogeneous) good between n agents (or players).

The cake is represented by the unit interval [0, 1]:

|----------------------|

0 1

Each agent i has a utility function ui (or valuation, measure) mapping

finite unions of subintervals of [0, 1] to the reals, satisfying:

• Non-negativity: ui(B) > 0 for all B ⊆ [0, 1]

• Normalisation: ui(∅) = 0 and ui([0, 1]) = 1

• Additivity: ui(B ∪B′) = ui(B) + ui(B
′) for disjoint B, B′ ⊆ [0, 1]

• ui is continuous: the Intermediate-Value Theorem applies and

single points do not have any value.

J. Robertson and W. Webb. Cake-Cutting Algorithms: Be Fair if You Can.

A.K. Peters, 1998.

Ulle Endriss 14

Fair Division COMSOC 2010

Cut-and-Choose

The classical approach for dividing a cake between two agents:

◮ One agent cuts the cake in two pieces (which she considers to be

of equal value), and the other one chooses one of the pieces (the

piece she prefers).

The cut-and-choose procedure is proportional:

◮ Each agent is guaranteed at least one half (general: 1/n)

according to her own valuation.

Discussion: In fact, the first agent (if she is risk-averse) will receive

exactly 1/2, while the second will usually get more.

What if there are more than two agents?
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The Dubins-Spanier Procedure

Dubins and Spanier (1961) proposed a proportional procedure for

arbitrary n, produceing contiguous slices.

(1) A referee moves a knife slowly across the cake, from left to right.

Any player may shout “stop” at any time. Whoever does so

receives the piece to the left of the knife.

(2) When a piece has been cut off, we continue with the remaining

n−1 players, until just one player is left (who takes the rest). X

Observe that this is also not envy-free. The last chooser is best off

(she is the only one who can get more than 1/n).

Note that this is not a discrete “protocol” (i.e., an algorithm) in the

narrow sense of the word (you cannot actually implement this!).

L.E. Dubins and E.H. Spanier. How to Cut a Cake Fairly. American Mathematical

Monthly, 68(1):1–17, 1961.

Ulle Endriss 16



Fair Division COMSOC 2010

The Banach-Knaster Last-Diminisher Procedure

In the first ever paper on fair division, Steinhaus (1948) reports on a

solution for arbitrary n proposed by Banach and Knaster.

(1) Agent 1 cuts off a piece (that she considers to represent 1/n).

(2) That piece is passed around the agents. Each agent either lets it

pass (if she considers it too small) or trims it down further (to

what she considers 1/n).

(3) After the piece has made the full round, the last agent to cut

something off (the “last diminisher”) is obliged to take it.

(4) The rest (including the trimmings) is then divided amongst the

remaining n−1 agents. Play cut-and-choose once n = 2. X

Each agent is guaranteed a proportional piece. Takes O(n2) steps.

H. Steinhaus. The Problem of Fair Division. Econometrica, 16:101–104, 1948.
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The Even-Paz Divide-and-Conquer Procedure

Even and Paz (1984) investigated upper bounds for the number of

queries (cuts or marks) required for n agents.

They introduced the following divide-and-conquer protocol:

(1) Ask each agent to cut the cake at her ⌊n

2
⌋ / ⌈n

2
⌉ mark.

(2) Associate the union of the leftmost ⌊n

2
⌋ pieces with the agents

who made the leftmost ⌊n

2
⌋ cuts (group 1), and the rest with the

others (group 2).

(3) Recursively apply the same procedure to each of the two groups,

until only a single agent is left. X

Each agent is guaranteed a proportional piece. Takes O(n log n) steps.

S. Even and A. Paz. A Note on Cake Cutting. Discrete Applied Mathematics,

7:285–296, 1984.
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Envy-Free Procedures

Achieving envy-freeness is much harder than achieving proportionality:

• For n = 2 the problem is easy: cut-and-choose does the job.

• For n = 3 we will see two solutions. They are already quite

complicated: either the number of cuts is not minimal (but > 2),

or several simultaneously moving knives are required.

• For n = 4, to date, no procedure producing contiguous pieces is

known. Barbanel and Brams (2004), for example, give a

moving-knife procedure requiring up to 5 cuts.

• For n > 6, to date, only procedures requiring an unbounded

number of cuts are known (see e.g. Brams and Taylor, 1995).

J.B. Barbanel and S.J. Brams. Cake Division with Minimal Cuts. Mathematical

Social Sciences, 48(3):251–269, 2004.

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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The Selfridge-Conway Procedure

The first discrete protocol achieving envy-freeness for n = 3 has been

discovered independently by Selfridge and Conway (around 1960). Our

exposition follows Brams and Taylor (1995).

(1) Player 1 cuts the cake in three pieces (she considers equal).

(2) Player 2 either “passes” (if she thinks at least two pieces are tied for

largest) or trims one piece (to get two tied for largest pieces). — If she

passed, then let players 3, 2, 1 pick (in that order). X

(3) If player 2 did trim, then let 3, 2, 1 pick (in that order), but require 2 to

take the trimmed piece (unless 3 did). Keep the trimmings unallocated

for now (note: the partial allocation is envy-free).

(4) Now divide the trimmings. Whoever of 2 and 3 received the untrimmed

piece does the cutting. Let players choose in this order: non-cutter,

player 1, cutter. X

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.

Ulle Endriss 20



Fair Division COMSOC 2010

The Stromquist Procedure

Stromquist (1980) found an envy-free procedure for n = 3 producing

contiguous pieces, though requiring four simultaneously moving knifes:

• A referee slowly moves a knife across the cake, from left to right

(supposed to cut somewhere around the 1/3 mark).

• At the same time, each agent is moving her own knife so that it

would cut the righthand piece in half (wrt. her own valuation).

• The first agent to call “stop” receives the piece to the left of the

referee’s knife. The righthand part is cut by the middle one of the

three agent knifes. If neither of the other two agents hold the

middle knife, they each obtain the piece at which their knife is

pointing. If one of them does hold the middle knife, then the

other one gets the piece at which her knife is pointing. X

W. Stromquist. How to Cut a Cake Fairly. American Mathematical Monthly,

87(8):640–644, 1980.
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Summary

We have briefly touched upon three topics in fair division:

• Criteria for assessing fairness of an allocation of resources

(or more generally: utility vectors)

• Combinatorial optimisation and negotiation for the fair allocation

of indivisible goods

• Cake-cutting algorithms (single divisible good)

U. Endriss. Lecture Notes on Fair Division. ILLC, University of Amsterdam, 2010.
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