
Complexity Theory Tutorial COMSOC 2010

Computational Social Choice: Autumn 2010

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Complexity Theory Tutorial COMSOC 2010

Plan for Today

This will be a tutorial on Complexity Theory. Topics covered:

• Definition of complexity classes in terms of time and space

requirements of algorithms solving problems

• Notion of hardness and completeness wrt. a complexity class

• Proving NP-completeness results

The focus will be on using complexity theory in other areas, rather

than on learning about complexity theory itself.

Much of the material is taken from Papadimitriou’s textbook, but can

also be found in most other books on the topic.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Ulle Endriss 2

Complexity Theory Tutorial COMSOC 2010

Problems

What can be computed at all is the subject of computability theory.

Here we deal with solvable problems, but ask how hard they are.

Some examples of such problems:

• Is ((P → Q) → P) → P a theorem of classical logic?

• What is the shortest path from here to the central station?

We are not really interested in such specific problem instances, but

rather in classes of problems, parametrised by their size n ∈ N:

• For a given formula of length ≤ n, check whether it is a theorem

of classical logic!

• Find the shortest path between two given vertices on a given

graph with up to n vertices! (or: is there a path ≤ K?)

Finally, we will only be interested in decision problems, problems that

require “yes” or “no” as an answer.

Ulle Endriss 3

Complexity Theory Tutorial COMSOC 2010

Example

Problems will be defined like this:

Reachability

Instance: Directed graph G = (V,E) and two vertices v, v′ ∈ V

Question: Is there a path leading from v to v′?

It is possible to solve this problem with an algorithm that has

“quadratic complexity” — what does that mean?

Ulle Endriss 4

Complexity Theory Tutorial COMSOC 2010

Complexity Measures

First, we have to specify the resource with respect to which we are

analysing the complexity of an algorithm.

• Time complexity : How long will it take to run the algorithm?

• Space complexity : How much memory do we need to do so?

Then, we can distinguish worst-case and average-case complexity:

• Worst-case analysis: How much time/memory will the algorithm

require in the worst case?

• Average-case analysis: How much will it use on average?

But giving a formal average-case analysis that is theoretically sound is

difficult (where will the input distribution come from?).

The complexity of a problem is the complexity of the best algorithm

solving that problem.

Ulle Endriss 5

Complexity Theory Tutorial COMSOC 2010

The Big-O Notation

Take two functions f : N → N and g : N → N.

Think of f as computing, for any problem size n, the worst-case time

complexity f(n). This may be rather complicated a function.

Think of g as a function that may be a “good approximation” of f

and that is more convenient when speaking about complexities.

The Big-O Notation is a way of making the idea of a suitable

approximation mathematically precise.

◮ We say that f(n) is in O(g(n)) iff there exist an n0 ∈ N and a

c ∈ R
+ such that f(n) ≤ c · g(n) for all n ≥ n0.

That is, from a certain n0 onwards, the function f grows at most as

fast as the reference function g, modulo some constant factor c about

which we don’t really care.

Ulle Endriss 6

Complexity Theory Tutorial COMSOC 2010

Tractability and Intractability

Problems that permit polynomial time algorithms are usually

considered tractable. Problems that require exponential algorithms are

considered intractable. Some remarks:

• Of course, a polynomial algorithm running in n1000 may behave a

lot worse than an exponential algorithm running in 2
n

100 . However,

experience suggests that such large factors do not actually come

up for “real” problems. In any case, for very large n, the

polynomial algorithm will always do better.

• It should also be noted that there are empirically successful

algorithms for problems that are known not to be solvable in

polynomial time. Such algorithms can never be efficient in the

general case, but may perform very well on the problem instances

that come up in practice.

Ulle Endriss 7

Complexity Theory Tutorial COMSOC 2010

The Travelling Salesman Problem

The decision problem variant of a famous problem:

Travelling Salesman Problem (TSP)

Instance: n cities; distance between each pair; K ∈ N

Question: Is there a route ≤ K visiting each city exactly once?

A possible algorithm for TSP would be to enumerate all complete

paths without repetitions and then to check whether one of them is

short enough. The complexity of this algorithm is O(n!).

Slightly better algorithms are known, but even the very best of these

are still exponential (and many people tried). This suggests a

fundamental problem: maybe an efficient solution is impossible?

Note that if someone guesses a potential solution path, then checking

the correctness of that solution can be done in linear time.

◮ So checking a solution is a lot easier than finding one.

Ulle Endriss 8

Complexity Theory Tutorial COMSOC 2010

Deterministic Complexity Classes

A complexity class is a set of (classes of) decision problems with the

same worst-case complexity.

• TIME(f(n)) is the set of all decision problems that can be

solved by an algorithm with a runtime of O(f(n)).

For example, Reachability ∈ TIME(n2).

• SPACE(f(n)) is the set of all decision problems that can be

solved by an algorithm with memory requirements in O(f(n)).

For example, TSP ∈ SPACE(n), because our brute-force

algorithm only needs to store the route currently being tested and

the route that is the best so far.

These are also called deterministic complexity classes (because the

algorithms used are required to be deterministic).

Ulle Endriss 9

Complexity Theory Tutorial COMSOC 2010

Nondeterministic Complexity Classes

Remember that we said that checking whether a proposed solution is

correct is different from finding one (it’s easier).

We can think of a decision problem as being of the form “is there an

X with property P ?”. It might already be in that form originally

(e.g., “is there a route that is short enough?”); or we can reformulate

(e.g., “is ϕ satisfiable?” ; “is there a model M s.t. M |= ϕ?”).

• NTIME(f(n)) is the set of classes of decision problems for

which a candidate solution can be checked in time O(f(n)).

For instance, TSP ∈ NTIME(n), because checking whether a

given route is short enough is possible in linear time (just add up

the distances and compare to K).

• Accordingly for NSPACE(f(n)).

So why are they called nondeterministic complexity classes?

Ulle Endriss 10

Complexity Theory Tutorial COMSOC 2010

Ways of Interpreting Nondeterminism

• Think of an algorithm as being implemented on a machine that

moves from one state (memory configuration) to the next. For a

nondeterministic algorithm the state transition function is

underspecified (more than one possible follow-up state).

A machine is said to solve a problem using a nondeterministic

algorithm iff there exists a run answering “yes”.

• We can think of this as an oracle that tells us which is the best

way to go at each choicepoint in the algorithm.

• This view is equivalent to interpreting nondeterminism as the

ability to check correctness of a candidate solution: all the “little

oracles” along a computation path can be packed together into

one “big initial oracle” to guess a solution; then all that remains

to be done is to check its correctness.

Ulle Endriss 11

Complexity Theory Tutorial COMSOC 2010

P and NP

The two most important complexity classes:

P =
⋃

k>1

TIME(nk)

NP =
⋃

k>1

NTIME(nk)

From our discussion so far, you know that this means that:

• P is the class of problems that can be solved in polynomial time

by a deterministic algorithm; and

• NP is the class of problems for which a proposed solution can be

verified in polynomial time.

Ulle Endriss 12

Complexity Theory Tutorial COMSOC 2010

Other Common Complexity Classes

PSPACE =
⋃

k>1

SPACE(nk)

NPSPACE =
⋃

k>1

NSPACE(nk)

EXPTIME =
⋃

k>1

TIME(2(nk))

Ulle Endriss 13

Complexity Theory Tutorial COMSOC 2010

Relationships between Complexity Classes

The following inclusions are known:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

P ⊂ EXPTIME

Hence, one of the ⊆’s above must actually be strict, but we don’t

know which. Most experts believe they are probably all strict. In the

case of P ⊂?
NP, the answer is worth $1.000.000.

Remarks: PSPACE = NPSPACE is Savitch’s Theorem;

P ⊂ EXPTIME is a corollary of the Time Hierarchy Theorem;

the other inclusions are easy.

Ulle Endriss 14

Complexity Theory Tutorial COMSOC 2010

Complements

• Let P be a class of decision problems. The complement P of P is

the set of all instances that are not positive instances of P .

Example: Sat is the problem of checking whether a given formula

of propositional logic is satisfiable. The complement of Sat is

checking whether a given formula is not satisfiable (which is

equivalent to checking whether its negation is valid).

• For any complexity class C, we define coC = {P | P ∈ C}.

Example: coNP is the class of problems for which a negative

answer can be verified in polynomial time.

• Clearly, P = coP. But nobody knows whether NP =?
coNP

(people tend to think not).

Ulle Endriss 15

Complexity Theory Tutorial COMSOC 2010

Polynomial-Time Reductions

Problem A reduces to problem B if we can translate any instance of A

into an instance of B that we can then feed into a solver for B to

obtain an answer to our original question (of type A).

If the translation process is “easy” (polynomial), then we can claim

that problem B is at least as hard as problem A (as a B-solver can

then solve any instance of A, and possibly a lot more).

So, to prove that problem B is at least as hard as problem A:

• Show how to translate any A-instance into a B-instance in

polynomial time; and then

• show that the answer to the A-instance should be YES iff a

B-solver will answer YES to the translated problem.

Ulle Endriss 16

Complexity Theory Tutorial COMSOC 2010

Hardness and Completeness

Let C be a complexity class.

• A problem P is C-hard if any P ′ ∈ C is polynomial-time reducible

to P . That is, the C-hard problems include the very hardest

problems inside of C, and even harder ones.

• A problem P is C-complete if P is C-hard and P ∈ C. That is,

these are the hardest problems in C, and only those.

Ulle Endriss 17

Complexity Theory Tutorial COMSOC 2010

Cook’s Theorem

The first decision problem ever to be shown to be NP-complete is the

satisfiability problem for propositional logic.

Satisfiability (Sat)

Instance: Propositional formula ϕ

Question: Is ϕ satisfiable?

The size of an instance of Sat is the length of ϕ. Clearly, Sat can be

solved in exponential time (by trying all possible models), but no

(deterministic) polynomial algorithm is known.

Theorem 1 (Cook, 1971) Sat is NP-complete.

The proof is difficult, and we shall not discuss it here.

Corollary 1 Checking whether a given propositional formula is a

tautology is coNP-complete.

S. Cook. The Complexity of Theorem-Proving Procedures. Proc. STOC-1971.

Ulle Endriss 18

Complexity Theory Tutorial COMSOC 2010

Variants of Satisfiability

If we restrict the structure of propositional formulas, then there’s a

chance that the satisfiability problem will become easier.

k-Satisfiability (kSat)

Instance: Conjunction ϕ of k-clauses

Question: Is ϕ satisfiable?

(A k-clause is a disjunction of (at most) k literals.)

A variant of Cook’s Theorem, again without proof (also difficult),

shows that it does in fact not get any easier, as long as k ≥ 3:

Theorem 2 3Sat is NP-complete (but 2Sat is in P).

But now that we have this result, we can get a lot of other results

using reduction . . .

Ulle Endriss 19

Complexity Theory Tutorial COMSOC 2010

Counting Clauses

If not all clauses of a given formula in CNF can be satisfied

simultaneously, what is the maximum number of clauses that can?

Maximum k-Satisfiability (MaxkSat)

Instance: Set S of k-clauses and K ∈ N

Question: Is there a satisfiable S′ ⊆ S such that |S′| ≥ K?

For this kind of problem, we cross the border between P and NP

already for k = 2 (rather than k = 3, as before):

Theorem 3 Max2Sat is NP-complete.

Proof sketch: Max2Sat is clearly in NP: if someone guesses an

S′ ⊆ S and a model with |S′| ≥ K, we can check whether S′ is true in

that model in polynomial time. X

Next we show NP-hardness by reducing 3Sat to Max2Sat . . .

Ulle Endriss 20

Complexity Theory Tutorial COMSOC 2010

Reduction from 3SAT to MAX2SAT

Consider the following 10 clauses:

(x), (y), (z), (w),

(¬x ∨ ¬y), (¬y ∨ ¬z), (¬z ∨ ¬x),

(x ∨ ¬w), (y ∨ ¬w), (z ∨ ¬w)

Observe: any model satisfying (x ∨ y ∨ z) can be extended to satisfy

(at most) 7 of them; all other models satisfy at most 6 of them.

Given an instance of 3Sat, construct an instance of Max2Sat:

For each clause Ci = (xi ∨ yi ∨ zi) in ϕ, write down these 10 clauses

with a new wi. If the input has n clauses, set K = 7n.

Then ϕ is satisfiable iff (at least) K of the 2-clauses in the new

problem are satisfiable. X

Ulle Endriss 21

Complexity Theory Tutorial COMSOC 2010

Independent Sets

Many conceptually simple problems that are NP-complete can be

formulated as problems in graph theory, e.g.:

Let G = (V, E) be an undirected graph. An independent set is a set

I ⊆ V such that there are no edges between any of the vertices in I.

Independent Set

Instance: Undirected graph G = (V,E) and K ∈ N

Question: Does G have an independent set I with |I| ≥ K?

Theorem 4 Independent Set is NP-complete.

Proof sketch: NP-membership: easy X

NP-hardness: by reduction from 3Sat with n clauses —

Given a conjunction ϕ of 3-clauses, construct a graph G = (V, E).

V is the set of occurrences of literals in ϕ. Edges: make a “triangle”

for each 3-clause, and connect complementary literals. Set K = n.

Then ϕ is satisfiable iff there is an independent set of size K. X

Ulle Endriss 22

Complexity Theory Tutorial COMSOC 2010

Summary

We have covered the following topics:

• Definition of complexity classes: P, NP, coNP, PSPACE, . . .

• Relationships between complexity classes

• Hardness and completeness wrt. a complexity class

Examples for NP-complete problems include:

• Logic: Sat, 3Sat, Max2Sat (but not 2Sat)

• Graph Theory: Independent Set

Recall that the P-NP borderline is widely considered to represent the

move from tractable to intractable problems, so developing a feel for

what sort of problems are NP-complete is important to understand

what can and what cannot be computed in practice.

You should be able to interpret complexity results, and to carry out

simple reductions to prove NP-completeness results yourself.

Ulle Endriss 23

Complexity Theory Tutorial COMSOC 2010

Literature

Helpful textbooks include:

• S. Arora and B. Barak. Computational Complexity: A Modern

Approach. Cambridge University Press, 2009.

• C.H. Papadimitriou. Computational Complexity. Addison-Wesley

Publishing Company, 1994.

• M. Sipser. Introduction to the Theory of Computation. Course

Technology, 1996.

For large collections of NP-complete problems, the books by Garey and

Johnson (1979) and Ausiello et al. (1999) are indispensable references.

• M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. Freeman & Co., 1979.

• G. Ausiello et al. Complexity and Approximation. Springer, 1999.

See also: http://www.nada.kth.se/~viggo/wwwcompendium/

Ulle Endriss 24

