
Preference Representation COMSOC 2009

Computational Social Choice: Spring 2009

Ulle Endriss
Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Preference Representation COMSOC 2009

Plan for Today

Collective decision making is driven by the interests of individuals,
who must be able to communicate preferences (directly through
explicit preference revelation, or indirectly via “moves” in a game).

• So far, we have treated this topic only very abstractly , by
saying that agents “have” some preference structure.

– could be a linear order (assumption so far) or similar

– could be a utility function

• Today we want to introduce languages for representing such
preference structures in a compact manner, which is of critical
importance for social choice in combinatorial domains.

• We shall be interested in the properties of these languages,
such as expressive power and comparative succinctness.

Ulle Endriss 2

Preference Representation COMSOC 2009

Cardinal and Ordinal Preferences

A preference structure represents an agent’s preferences over a
(finite) set of alternatives X . Different types of preferences:

• A cardinal preference structure is a (utility or valuation)
function u : X → Val , where Val is usually a set of numerical
values such as N or R.

• An ordinal preference structure is a binary relation � on X :

– linear order: reflexive, transitive, antisymmetric, complete

– weak order: reflexive, transitive, complete

– partial orders have also been considered (nonstandard)

Every complete ordinal preference relation � is representable by a
utility function u: x � y iff u(x) ≤ u(y).

Ulle Endriss 3

Preference Representation COMSOC 2009

Appropriateness of Representation

• Real-world/cognitive considerations: how close should the
representation be to how humans express their preferences?

– Can we assume that an agent can assign a real number
reflecting preference to each alternative?

– How do we elicit preference information?

• “Axiomatic” considerations: never mind the real world—what
aspects of preference matter for our theorem/algorithm?

– Ordinal preferences don’t permit interpersonal comparison
(“Ann likes x more than Bob likes y”).

– Ordinal preferences cannot express preference intensity ;
cardinal preferences can (subject to Val being numerical).

• Computational considerations: main topic of this lecture . . .

Ulle Endriss 4

Preference Representation COMSOC 2009

Combinatorial Domains

A combinatorial domain is a Cartesian product D = D1 × · · · ×Dn

of n finite domains. Many collective decision-making problems of
practical interest have a combinatorial structure:

• During a referendum (in Switzerland, California, places like
that), voters may be asked to vote on n different propositions.

• Elect a committee of k members from amongst n candidates.

• Find a good allocation of n indivisible goods to agents.

Seemingly small problems generate huge numbers of alternatives:

•
(
10
3

)
= 120 possible 3-member committees from 10 candidates;

i.e., 120! ≈ 6.7× 10198 possible linear (more weak) orders

• Allocating 10 goods to 5 agents: 510 = 9765625 allocations and
210 = 1024 bundles for each agent to think about

Therefore: we need good languages for representing preferences!

Ulle Endriss 5

Preference Representation COMSOC 2009

Preference Representation Languages

Concerning computational considerations, the following questions
should be addressed when choosing a language:

• Elicitation: How difficult is it to elicit the preferences of an
agent so as to represent them in the chosen language?

• Expressive power: Can the chosen language encode all the
preference structures we are interested in?

• Succinctness: Is the representation of (typical) structures
succinct? Is one language more succinct than the other?

• Complexity: What is the computational complexity of related
decision problems, such as comparing two alternatives?

We are going to concentrate on the final three.

Ulle Endriss 6

Preference Representation COMSOC 2009

Representing Set Functions

Recall: a combinatorial domain is a product D = D1 × · · · ×Dn.

A typical scenario is the domain of resource allocation problems:

• For a given set G of goods, we want to represent an agent’s
utility function u : 2G → R, mapping bundles to the reals.

• That is, here each Dn is a binary domain, and n = |G|.

• More abstractly: we want to represent a set function.

Ulle Endriss 7

Preference Representation COMSOC 2009

Explicit Representation

The explicit form of representing a utility function u consists of a
table listing for every bundle S ⊆ G the utility u(S).
By convention, table entries with u(S) = 0 may be omitted.

• the explicit form is fully expressive:
any utility function u : 2G → R may be so described

• the explicit form is not concise: it may require up to 2n entries

Even very simple utility functions may require exponential space:
e.g., the function u : S 7→ |S| mapping bundles to their cardinality.

I We now introduce one example for a more sophisticated type of
language, give exemplary expressivity, succinctness and complexity
results, and then briefly review other languages from the literature.

Ulle Endriss 8

Preference Representation COMSOC 2009

Weighted Propositional Formulas

A compact representation language for modelling utility functions
over products of binary domains —

Notation: finite set of propositional letters PS ; we can use the
propositional language LPS over PS to describe goals.

A goalbase is a set G = {(ϕi, wi)}i of pairs, each consisting of a
(consistent) propositional formula ϕi ∈ LPS and a real number wi.
The utility function uG generated by G is defined by

uG(M) =
∑

{wi | (ϕi, wi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

Example: {(p ∨ q ∨ r, 7), (p ∧ q,−2), (¬s, 1)}

Ulle Endriss 9

Preference Representation COMSOC 2009

A Family of Languages

By imposing different restrictions on formulas and/or weights we
can design different representation languages.

Regarding formulas, we may consider restrictions such as:

• positive formulas (no occurrence of ¬)

• clauses and cubes (disjunctions and conjunctions of literals)

• k-formulas (formulas of length ≤ k), e.g. 1-formulas = literals

• combinations of the above, e.g. k-pcubes

Regarding weights, interesting restrictions would be R+ or {0, 1}.

If H ⊆ LPS is a restriction on formulas and H ′ ⊆ R a restriction on
weights, then L(H,H ′) is the language conforming to H and H ′.

Ulle Endriss 10

Preference Representation COMSOC 2009

Properties

We are interested in the following types of questions:

• Are there restrictions on goalbases such that the utility
functions they generate enjoy natural structural properties?

• Are some goalbase languages more succinct than others?

• What is the computational complexity of reasoning about
preferences expressed in a given language?

The results on the following slides are from Uckelman et al. (2009).

J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing Utility

Functions via Weighted Goals. Mathematical Logic Quarterly, 2009. In press.

Ulle Endriss 11

Preference Representation COMSOC 2009

Expressive Power

We first give an example for a language that is fully expressive:

Theorem 1 (Expressivity of pcubes) L(pcubes, R), the
language of positive cubes, can express all utility functions.

Proof: Let u : 2PS → R be any utility function. Define goalbase G:

(>, w>) with w> = u({ })
(p, wp) with wp = u({p})− w>

(p ∧ q, wp,q) with wp,q = u({p, q})− wp − wq − w> . . .
(
∧

P,wP) with wP = u(P)−
∑

Q⊂P wQ

Clearly, G thus defined will generate the function u. X

Observe that the proof also demonstrates that L(pcubes, R) has a
unique way of representing any given function.

L(cubes, R), for example, is also fully expressive but not unique:
{(p ∧ q, 5), (p ∧ ¬q, 5), (¬p ∧ q, 3), (¬p ∧ ¬q, 3)} ≡ {(>, 3), (p, 2)}

Ulle Endriss 12

Preference Representation COMSOC 2009

Expressive Power: Modular Functions

A function u : 2PS → R is modular if for all M1,M2 ⊆ 2PS we have:

u(M1 ∪M2) = u(M1) + u(M2)− u(M1 ∩M2)

Here’s a nice characterisation of the modular functions:

Theorem 2 (Expressivity of literals) L(literals, R) can express
all modular utility functions, and only those.

Proof sketch: Modular functions are like additive functions, except
that we allow non-zero values for { }. Easy to see that L(atoms, R)
expresses exactly the additive functions.

So L(atoms ∪ {>}, R) expresses exactly the modular functions.

To see that adding negation does not increase expressive power,
observe that G ∪ {(¬ϕ, w)} ≡ G ∪ {(>, w), (ϕ,−w)}. X

Ulle Endriss 13

Preference Representation COMSOC 2009

Expressive Power: Monotonic Functions

A function u : 2PS → R is monotonic if for all M1,M2 ⊆ 2PS :

M1 ⊆ M2 implies u(M1) ≤ u(M2)

We state this next theorem without proof:

Theorem 3 (Expressivity of pforms/pos) L(pforms, R+), the
language of positive formulas with positive weights, can express all
nonnegative monotonic utility functions, and only those.

Ulle Endriss 14

Preference Representation COMSOC 2009

Relative Succinctness

If two languages can express the same class of utility functions,
which should we use? An important criterion is succinctness.

Let L and L′ be two languages that can define all utility functions
belonging to some class U .

We say that L′ is at least as succinct as L (L � L′) over U if there
exist a mapping f : L → L′ and a polynomial function p such that
for all expressions G ∈ L with the corresponding function uG ∈ U :

• G ≡ f(G) (i.e., they represent the same function: uG = uf(G));

• and size(f(G)) ≤ p(size(G)) (polysize reduction).

L is less succinct than L′ (L ≺ L′) iff L � L′ and not L′ � L.
Equivalence (∼) and incomparability (⊥) are defined accordingly.

Ulle Endriss 15

Preference Representation COMSOC 2009

The Effect of Negation

We have seen that positive cubes are fully expressive. Hence,
L(pcubes, R) and L(cubes, R) have the same expressivity.

Theorem 4 (Succinctness) L(pcubes, R) ≺ L(cubes, R).

Proof: Clearly, L(pcubes, R) � L(cubes, R), because any positive
cube is also a cube.

Now consider u with u({ }) = 1 and u(M) = 0 for all M 6= { }:

• G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} ∈ L(cubes, R) has linear size and
generates u.

• G′ = {(
∧

X, (−1)|X|) | X ⊆ PS} ∈ L(pcubes, R) has
exponential size and also generates u.

But there can be not better way of expressing u in pcubes, because
we have seen that pcube representations are unique. X

Ulle Endriss 16

Preference Representation COMSOC 2009

More Succinctness Results

Some more examples for succinctness theorems (without proof):

• Cubes and clauses are equally succinct:

Theorem 5 L(cubes, R) ∼ L(clauses, R)

• But positive cubes and clauses are incomparable:

Theorem 6 L(pcubes, R) ⊥ L(pclauses, R)

• If we restrict the weights, we get equal succinctness again:

Theorem 7 L(pcubes, R+) ∼ L(pclauses, R+)

In fact, this result is more about expressivity: it is a corollary
of other results showing that only modular functions are
expressible in both L(pcubes, R+) and L(pclauses, R+).

• The most difficult result, showing that we really gain further
succinctness as we enrich the formula language:

Theorem 8 L(cubes, R) ≺ L(forms, R)

Ulle Endriss 17

Preference Representation COMSOC 2009

Computational Complexity

Other interesting questions concern the complexity of reasoning
about preferences. Consider the following decision problem:

Max-Utility(H, H ′)

Instance: Goalbase G ∈ L(H, H ′) and K ∈ Z
Question: Is there an M ∈ 2PS such that uG(M) ≥ K?

Some basic results are straightforward:

• Max-Utility(H,H ′) is in NP for any H ⊆ LPS and H ′ ⊆ Q,
because we can always check uG(M) ≥ K in polynomial time.

• Max-Utility(forms, Q) is NP-complete, certainly if we do not
assume that formulas are satisfiable (reduction from Sat).

More interesting questions would be: are there either (1) “large”
sublanguages for which Max-Utility is still polynomial, or
(2) “small” sublanguages for which it is already NP-hard?

Ulle Endriss 18

Preference Representation COMSOC 2009

Three Complexity Results
Theorem 9 Max-Utility(k-cubes, Q) is NP-complete, even for
k = 2 and assuming all formulas are satisfiable.

Proof: By reduction from Max2Sat (NP-hard): “Given a set of
2-clauses, is there a satisfiable subset with cardinality ≥ K?”.
Given a Max2Sat instance, for each clause p ∨ q create a goal
(¬p ∧ ¬q,−1). Add (>, N), where N is the number of clauses.
Answer YES for the Max2Sat instance iff max. utility is ≥ K. X

Remark: NP-hardness persists if Q is replaced by {1}.

Theorem 10 Max-Utility(literals, Q) is in P.

Proof: Assuming that G contains every literal exactly once
(possibly with weight 0), making p true iff the weight of p is greater
than the weight of ¬p results in a model with maximal utility. X

Theorem 11 Max-Utility(pforms, Q+) is in P.

Proof: Making all variables true yields maximal utility. X

Ulle Endriss 19

Preference Representation COMSOC 2009

Preference Representation Languages

We have looked into goalbase languages in detail, to see examples
for the kinds of technical results that people have been looking into
(others have done similar things for other languages).

Next, some examples for other languages, for representing both
utility functions and ordinal preferences.

Ulle Endriss 20

Preference Representation COMSOC 2009

The k-additive Form

• A utility function is k-additive iff the utility assigned to a
bundle X can be represented as the sum of marginal utilities
for subsets of X with cardinality ≤ k (limited synergies).

• The k-additive form of representing utility functions:

u(X) =
∑

T⊆X

αT with αT = 0 whenever |T | > k

Example: u = 3.x1 + 7.x2 − 2.x2.x3 is a 2-additive function

• That is, specifying a utility function in this language means
specifying the coefficients αT for bundles T ⊆ R.

• In the context of resource allocation, the value αT can be seen
as the additional benefit incurred from owning the items in T

together , i.e., beyond the benefit of owning all proper subsets.

• Just a notational variant of L(k-pcubes, R)!

Ulle Endriss 21

Preference Representation COMSOC 2009

Bidding Languages

In combinatorial auctions the process of bidding amounts to
transmitting a cardinal preference structure (valuation function).

People have developed special bidding languages for this purpose.
Example for a bid using the so-called OR-language:

〈{a}, 2〉 or 〈{b}, 2〉 or 〈{c}, 1〉 or 〈{a, b}, 5〉

This expresses that the bidder is happy to buy any of the given sets
at the prices specified, provided the sets selected do not overlap.

We will discuss bidding languages later on in the course.

Ulle Endriss 22

Preference Representation COMSOC 2009

Program-based Representations

Yet another approach to representing preferences would be to define
utilities in terms of a program: input bundle, output utility value.
But not just any program will do. Requirements:

• it must be possible to efficiently validate that a given string
constitutes a syntactically correct program; and

• we have to have an effective method of computing the output of
the program for any given input.

Dunne et al. (2005) propose such a program-based approach based
on so-called straight-line programs (warning: rather technical).

One result says that any function computable by a deterministic
TM in time T is representable by an SLP with O(T log T) lines.

P.E. Dunne, M. Wooldridge, and M. Laurence. The Complexity of Contract

Negotiation. Artificial Intelligence, 164(1–2):23–46, 2005.

Ulle Endriss 23

Preference Representation COMSOC 2009

Ordinal Preferences

Next we are going to look into different languages for representing
ordinal preference structures.

Note that an explicit representation of an ordinal preference
relation � over 2n alternatives requires space up to O(2n · 2n):
for each pair of alternatives, say which one is preferred.

Ulle Endriss 24

Preference Representation COMSOC 2009

Prioritised Goals

Again, associate goods with propositional letters in PS and bundles
with models M ∈ 2PS . Goals can be expressed as formulas in the
propositional language LPS .

Instead of weights, we now have a priority relation over goals.
Assuming this priority relation is a linear order, it can be
represented by a function rank : N → N mapping each (index of a)
goal to its rank. By convention, a lower rank means higher priority .

A goalbase is now a finite set of goals with an associated rank
function: G = 〈{ϕ1, . . . , ϕm}, rank〉.

I Ideally, all goals will get satisfied. But if not, how can we extend
a priority relation over goals to a preference relation over models?

Ulle Endriss 25

Preference Representation COMSOC 2009

Combining Priorities

There are several options (convention: min({ }) = +∞):

• Best-out ordering:

M � M ′ iff min{rank(i) | M 6|= ϕi} ≤ min{rank(i) | M ′ 6|= ϕi}

That is, preference depends (only) on the rank of the most
important goal that is being violated.

• Discrimin ordering:
Let d(M,M ′) = min{rank(i) | M 6|= ϕi and M ′ |= ϕi} be the
rank of the most important “discriminating” goal.

M � M ′ iff d(M,M ′) ≤ d(M ′,M) or
{ϕi | M |= ϕi} = {ϕi | M ′ |= ϕi}

Ulle Endriss 26

Preference Representation COMSOC 2009

Combining Priorities (cont.)

• Leximin ordering:
Let dk(M) = |{ϕi | M |= ϕi and rank(ϕi) = k}| be the number
of goals of rank k that are satisfied by alternative M .

M � M ′ iff (1) for all k: dk(M) = dk(M ′) or

(2) there exists a k such that dk(M) < dk(M ′)

and for all j < k: dj(M) = dj(M ′)

Ulle Endriss 27

Preference Representation COMSOC 2009

Properties

• None of the three variants of combining prioritised goals leads
to a fully expressive preference representation language.

• For the strict parts of the preference relations we have:

– best-out preference entails discrimin preference; and

– discrimin preference entails leximin preference

Ulle Endriss 28

Preference Representation COMSOC 2009

Ceteris Paribus Preferences

In the language of ceteris paribus preferences, preferences are
expressed as statements of the form C : ϕ > ϕ′, meaning:

“If C is true, all other things being equal, I prefer
alternatives satisfying ϕ ∧ ¬ϕ′ over those satisf. ¬ϕ ∧ ϕ′.”

The “other things” are the truth values of the propositional
variables not occurring in ϕ and ϕ′. A preference relation can be
constructed as the transitive closure of the union of individual
preference statements.

Discussion: interesting from a cognitive point of view (arguably
close to human intuition), but of rather high complexity .

An important sublanguage of ceteris paribus preferences, imposing
various restrictions on goals, are CP-nets (; next week).

Ulle Endriss 29

Preference Representation COMSOC 2009

Summary

We have reviewed several preference representation languages for
both cardinal and ordinal preference structures.

• The computational aspects of preference representation are
crucial in combinatorial domains (such as resource allocation).

• We have emphasised expressivity , succinctness and complexity .

• Languages considered (there are more):

– cardinal : explicit form, weighted goals, k-additive form,
bidding languages, and program-based representations

– ordinal : prioritised goals and ceteris paribus statements

Ulle Endriss 30

Preference Representation COMSOC 2009

References

For an in-depth survey of logic-based languages for representing
preferences, refer to:

• J. Lang. Logical Preference Representation and Combinatorial
Vote. Annals of Mathematics and Artificial Intelligence,
42(1):37–71, 2004.

For a concise overview of the role of preference representation in
the context of multiagent resource allocation, consult:

• Y. Chevaleyre et al. Issues in Multiagent Resource Allocation.
Informatica, 30:3–31, 2006. (Sect. Preference Representation)

Ulle Endriss 31

Preference Representation COMSOC 2009

What next?

The aim of this lecture has been to present some preference
representation languages and to give examples for the kinds of
properties that we might want to prove about them.

Preferences will play a central role throughout the course.
Specifically, they will come up again on two occasions:

• Next week, we will introduce CP-nets in the context of
discussing voting in combinatorial domains.

• We will see a number of expressivity and succinctness results
for bidding languages later on in the course, when we will cover
combinatorial auctions.

Ulle Endriss 32

