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Plan for Today

Multiagent resource allocation is the problem of dividing a set of
resources amongst a group of agents, given certain criteria.

We will start with a very brief overview of the area (just one slide).
See the “MARA Survey” for full details.

Then we will discuss the allocation of indivisible goods:

• Complexity results for achieving optimal allocations

• Distributed MARA: convergence and related issues

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,

J. Padget, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multia-

gent Resource Allocation. Informatica, 30:3–31, 2006.
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The Problem

Consider a set of agents and a set of goods. Each agent has their
own preferences regarding the allocation of goods to be selected.

I What constitutes a good allocation and how do we find it?

What goods? One or several goods? Available in single or multiple
units? Divisible or indivisible? Can goods be shared? Static or
changing properties (e.g., consumable or perishable goods)?

What preferences? Ordinal or cardinal preferences? Are monetary
side payments possible, and how do they affect preferences?
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Setting

Today we consider the case of allocating indivisible (non-sharable,
single-unit, static) goods amongst agents with cardinal preferences.

We shall work in this framework:

• Set of agents N = {1..n} and finite set of indivisible goods G.

• An allocation A is a partitioning of G amongst the agents in N .
Example: A(i) = {g5, g7} — agent i owns goods g5 and g7

• Each agent i ∈ N has got a valuation function vi : 2G → R.
Example: vi(A) = vi(A(i)) = 577.8 — agent i is pretty happy

Later we will define utility functions over these valuations
(to account for payments). For now think of valuation as utility.

An allocation problem is a triple 〈N ,G,V〉, where V is a set of
valuation functions (+ possibly the initial allocation A0).
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Allocation Procedures

We can distinguish two approaches:

• In the centralised approach, we need to devise an optimisation
algorithm to compute an allocation meeting our fairness and
efficiency requirements.

– Today: some complexity results

– Later: combinatorial auctions

• In the distributed approach, allocations emerge as agents
implement a sequence of local deals. What can we say about
the properties of these emerging allocations?

Discussion: advantages and disadvantages of either approach
(simplicity of protocols, trust towards the centre, . . . )
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Social Welfare

Recall that we have seen a number of criteria, most of them based
on various social welfare orderings, that can be used to define what
constitutes an optimal allocation.

Specifically, utilitarian social welfare is defined as follows:

swu(A) =
∑
i∈N

vi(A)
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Welfare Optimisation

How hard is it to find an allocation with maximal social welfare?
Rephrase this optimisation problem as a decision problem:

Welfare Optimisation (WO)

Instance: 〈N ,G,V〉 and K ∈ Q
Question: Is there an allocation A such that swu(A) > K?

Unfortunately, the problem is intractable:

Theorem 1 Welfare Optimisation is NP-complete.

The proof (following slides) uses a reduction from a standard
reference problem (Set Packing) known to be NP-complete.

In the context of MARA, this kind of result seems to have first
been stated by Rothkopf et al. (1998).

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable

Combinational Auctions. Management Science, 44(8):1131–1147, 1998.
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Proof of NP-hardness

We are going to reduce our problem to Set Packing, one of the
standard problems known to be NP-complete:

Set Packing

Instance: Collection C of finite sets and K ∈ Q
Question: Is there a collection of disjoint sets C′ ⊆ C s.t. |C′| > K?

Given an instance C of Set Packing, consider this MARA setting:

• Goods: each item in one of the sets in C is a good

• Agents: one for each set in C + one other agent (called 0)

• Valuations: vC(S) = 1 if S = C and vC(S) = 0 otherwise;
v0(S) = 0 for all bundles S

That is, every agent values “its” bundle at 1 and every other
bundle at 0. Agent 0 values all bundles at 0.
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Proof of NP-hardness (cont.)

Observe that not every allocation immediately corresponds to a
valid solution of Set Packing: the bundles owned by individual
agents may not all be sets in C.

But: for every given allocation there exists an(other) allocation
with equal social welfare that does directly correspond to a valid
solution for Set Packing — just assign any goods owned by an
agent with valuation 0 to agent 0 (this reallocation does not affect
social welfare). Note that social welfare is equal to |C′|.

Hence, any algorithm for WO can also solve Set Packing

problems; so WO must be at least NP-hard. X
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Proof of Membership in NP

This part is in fact very easy . . .

Recall that a problem belongs to NP if it is possible to verify the
correctness of a candidate solution in polynomial time.

This is clearly the case here: Given an allocation A, we can
compute swu(A) in polynomial time. And A constitutes a correct
solution iff swu(A) > K. X
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Remarks

• To be precise, we have proved NP-hardness wrt. the number of
pairs of agents and bundles with non-zero value, corresponding
to the number of sets involved in Set Packing.

• Observe that this number itself may already be very high
(exponential in the number of goods).

• In other words, we have proved NP-completeness wrt. the
explicit form of representing valuation (utility) functions.
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Representation Issues

• As for all complexity results, the representation of the input
problem is crucial: if the input is represented inefficiently (e.g.,
using exponential space when this is not required), then
complexity results (expressed with respect to the size of the
input) may seem much more favourable than they really are.

• NP-completeness of Welfare Optimisation has been shown
with respect to several preference representation languages
(such as the k-additive form).

• In the sequel, the focus is on demonstrating what questions
people have been asking rather than on exact results.

Therefore, we do not give details regarding the representation
(but most results apply to a variety of languages).
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Welfare Improvement

The following problem is also NP-complete:

Welfare Improvement (WI)

Instance: 〈N ,G,V〉 and allocation A

Question: Is there an allocation A′ such that swu(A) < swu(A′)?

Given the close connection to Welfare Optimisation, this is not
very surprising.
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Pareto Optimality

A decision problem is said to be in coNP iff its complementary
problem (“is it not the case that . . . ”) is in NP.

Checking whether a given allocation is Pareto optimal is an
example for a coNP-complete decision problem:

Pareto Optimality (PO)

Instance: 〈N ,G,V〉 and allocation A

Question: Is A Pareto optimal?
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Envy-Freeness

Checking whether a given setting admits an envy-free allocation
(assuming all goods need to be allocated) is again NP-complete:

Envy-Freeness (EF)

Instance: 〈N ,G,V〉
Question: Is there a (complete) allocation A that is envy-free?

Checking whether there is an allocation that is both Pareto optimal
and envy-free is even harder: Σp

2-complete (NP with NP oracle).

S. Bouveret and J. Lang. Efficiency and Envy-freeness in Fair Division of In-

divisible Goods: Logical Representation and Complexity. Journal of Artificial

Intelligence Research, 32:525–564, 2008.
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Distributed Approach

Instead of devising algorithms for computing a socially optimal
allocation in a centralised manner, we now want agents to be able
to do this in a distributed way by contracting deals locally.

• A deal δ = (A,A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to
compensate some of the agents for a loss in valuation.

A payment function is a function p : N → R with
∑
i∈N

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays e5,
while agent j receives e5.

• Agents have quasi-linear utility functions:
utility = valuation for the bundle held − sum of payments
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Negotiating Socially Optimal Allocations

We are not going to talk about designing a concrete negotiation
protocol, but rather study the framework from an abstract point of
view. The main question concerns the relationship between

• the local view: what deals will agents make in response to their
individual preferences?; and

• the global view: how will the overall allocation of resources
evolve in terms of social welfare?

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal

Allocations of Resources. Journal of AI Research, 25:315–348, 2006.
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The Local/Individual Perspective

A rational agent (who does not plan ahead) will only accept deals
that improve its individual welfare:

I A deal δ = (A,A′) is called individually rational (IR) iff there
exists a payment function p such that vi(A′)− vi(A) > p(i) for
all agents i ∈ N , except possibly p(i) = 0 for agents i that are
not involved in the deal (those with A(i) = A′(i)).

So: an agent will only accept a deal iff it results in a gain in value
(or money) that strictly outweighs any loss in money (or value).
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The Global/Social Perspective

Suppose that as system designers we are interested in maximising
utilitarian social welfare:

swu(A) =
∑
i∈N

vi(A)

Observe that there is no need to include the agents’ monetary
balances into this definition, because they’d always add up to 0.

While the local perspective is driving the negotiation process, we
use the global perspective to assess how well we are doing.

I How well will this work?
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Example

Let N = {ann, bob} and G = {chair , table} and suppose our agents
use the following valuation functions:

vann({ }) = 0 vbob({ }) = 0

vann({chair}) = 2 vbob({chair}) = 3

vann({table}) = 3 vbob({table}) = 3

vann({chair , table}) = 7 vbob({chair , table}) = 8

Furthermore, suppose the initial allocation of goods is A0 with
A0(ann) = {chair , table} and A0(bob) = { }.

Social welfare for allocation A0 is 7, but it could be 8. By moving
only a single good from agent ann to agent bob, the former would
lose more than the latter would gain (not individually rational).

The only possible deal is to move the entire set {chair , table}.
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Linking the Local and the Global Perspectives

It turns out that individually rational deals are exactly those deals
that increase social welfare:

Lemma 1 (Rationality and social welfare) A deal δ = (A,A′)
with side payments is individually rational iff swu(A) < swu(A′).

Proof: “⇒”: Rationality means that overall utility gains outweigh
overall payments (which are = 0).

“⇐”: The social surplus can be divided amongst all agents by
using, say, the following payment function:

p(i) = vi(A′) − vi(A) − swu(A′)− swu(A)
|N |︸ ︷︷ ︸
> 0 X

Discussion: The lemma confirms that individually rational
behaviour is “appropriate” in utilitarian societies.
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Termination

We can now prove a first result on negotiation processes:

Lemma 2 (Termination) There can be no infinite sequence of
IR deals; that is, negotiation must always terminate.

Proof: Follows from the first lemma and the observation that the
space of distinct allocations is finite. X
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Convergence

It is now easy to prove the following convergence result (originally
stated by Sandholm in the context of distributed task allocation):

Theorem 2 (Sandholm, 1998) Any sequence of IR deals will
eventually result in an allocation with maximal social welfare.

Proof: Termination has been shown in the previous lemma. So let
A be the terminal allocation. Assume A is not optimal, i.e., there
exists an allocation A′ with swu(A) < swu(A′). Then, by our first
lemma, δ = (A,A′) is individually rational ⇒ contradiction. X

Discussion: Agents can act locally and need not be aware of the
global picture (convergence is guaranteed by the theorem).

T. Sandholm. Contract Types for Satisficing Task Allocation: I Theoretical

Results. Proc. AAAI Spring Symposium 1998.
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Multilateral Negotiation

On the downside, outcomes that maximise utilitarian social welfare
can only be guaranteed if the negotiation protocol allows for deals
involving any number of agents and goods:

Theorem 3 (Necessity of complex deals) Any deal δ = (A,A′)
may be necessary: there are valuation functions and an initial
allocation such that any sequence of individually rational deals
leading to an allocation with maximal utilitarian social welfare
would have to include δ (unless δ is “independently decomposable”).

(Independently decomposable deals are deals that can be split into
two subdeals involving distinct agents.)

The proof involves the systematic definition of valuation functions
such that A′ is optimal and A is the second best allocation.

The theorem holds even when valuation functions are restricted to
be monotonic or dichotomous.
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Modular Domains
A valuation function vi is called modular iff it satisfies the following

condition for all bundles B1, B2 ⊆ G:

vi(B1 ∪B2) = vi(B1) + vi(B2)− vi(B1 ∩B2)

That is, in a modular domain there are no synergies between items; you

can get the value of a bundle by adding up the values of its elements.

I Negotiation in modular domains is feasible:

Theorem 4 (Modular domains) If all valuation functions are

modular, then individually rational 1-deals (each involving just one item)

suffice to guarantee outcomes with maximal utilitarian social welfare.

We also know that the class of modular valuation functions is maximal:

no larger class could still guarantee the same convergence property.

Y. Chevaleyre, U. Endriss, and N. Maudet. Simple Negotiation Schemes for

Agents with Simple Preferences: Sufficiency, Necessity and Maximality. Jour-

nal of Autonomous Agents and Multiagent Systems, 2009. In press.
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Comparing Negotiation Policies
While we know from Theorem 4 that 1-deals (blue) guarantee an optimal

result, an experiment (20 agents, 200 goods, modular utilities) suggests

that general bilateral deals (red) achieve the same goal in fewer steps:

The graph shows how utilitarian social welfare (y-axis) develops as agents

attempt to contract more an more deals (x-axis) amongst themselves.

Graph generated using the MADRAS platform of Buisman et al. (2007).

H. Buisman, G. Kruitbosch, N. Peek, and U. Endriss. Simulation of Negotia-

tion Policies in Distributed Multiagent Resource Allocation. ESAW-2007.
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Other Topics

For most of the following topics there are some results available,
but none of them has been treated exhaustively:

• Besides modularity, can simple preferences guarantee
convergence by means of simple deals?

• What about convergence for other social optimality criteria?

• What about other types of models (such as sharable goods or
agents on a graph)?

• Can we give bounds on the number of deals required to reach
the optimum? (; communication complexity)

• How well can we approximate the optimum if full convergence
cannot be guaranteed?

• What are suitable logics for modelling MARA mechanisms and
verifying, say, convergence results? (; social software)
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Summary

We have discussed two aspects of multiagent resource allocation:

• Computational complexity of computing an optimal allocation,
for different interpretations of optimality

• Convergence to an optimal allocation in a distributed
negotiation setting

Some remarks in relation to earlier lectures:

• MARA with indivisible goods is an example for social choice in
combinatorial domains (like e.g. multiple referenda)

• MARA is more specific a problem than voting: agents are
indifferent between any alternatives awarding them the same
bundle (“no externalities” assumption)
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What next?

Finding an allocation that maximises utilitarian social welfare is
equivalent to determining the winners in a combinatorial auction.

Next we will discuss MARA from this perspective:

• Bidding languages for combinatorial auctions: another family
of preference representation languages

• Algorithms for determining the winners of an auction

• Game-theoretical considerations: mechanism design
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