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Introduction

The course will cover issues at the interface of computer science

(including logic, multiagent systems and artificial intelligence)

and mathematical economics (including social choice theory ,

game theory and decision theory).

There has been a recent trend towards research of this sort. The

broad philosophy is generally the same, but people have been using

different names to identify various flavours of this kind of work, e.g.:

• Algorithmic Game Theory

• Social Software

• and: Computational Social Choice

Very few specific prerequisites are required to follow the course.

Nevertheless, we will frequently touch upon current research issues.
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Organisational Matters

• Lecturer: Ulle Endriss (u.endriss@uva.nl), Room P.316

• TA: Umberto Grandi (u.grandi@uva.nl), Room P.311

• Timetable: Wednesdays 15–17 (+ two tutorials)

• Examination: There will be several coursework assignments

on the material covered in the course. In the second block,

every student will have to study a recent paper , write a short

essay on the topic, and present their findings in a talk.

• Website: Lecture slides, coursework assignments, and other

important information will be posted on the course website:

http://www.illc.uva.nl/∼ulle/teaching/comsoc/

• Seminars: There are occasional talks at the ILLC that are

directly relevant to the course and that you are welcome to

attend (e.g., at the Computational Social Choice Seminar).
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Prerequisites

There are no formal prerequisites. But: you should be comfortable

with formal material and you will be asked to prove stuff.

There are two areas for which we will assume some background

knowledge that some of you may not yet have. This material will

be covered in tutorials in the first two weeks:

• Game Theory: non-cooperative games in strategic form;

Pareto optimal outcomes; dominant strategies; pure and mixed

Nash equilibria; computing Nash equilibria for small games

• Complexity Theory: definition of complexity classes such as

P and NP; completeness with respect to a complexity class;

proving NP-completeness via reduction
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Related Courses

• Cooperative Games

Krzysztof Apt

• Games and Complexity

Peter van Emde Boas

• Introduction to Game Theory (in autumn)

Peter van Emde Boas

• Logic and Games (or similar, sometimes offered in autumn)

Johan van Benthem

• Multiagent Systems and Distributed AI (MSc AI)

Shimon Whiteson
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Plan for Today

• Part I: Introduction to the main topics of the course

• Part II: Arrow’s Impossibility Theorem

(as an example for a classical result in social choice theory)

Ulle Endriss 6

Introduction COMSOC 2009

Part I: Course Topics

Ulle Endriss 7

Introduction COMSOC 2009

Collective Decision Making

This course is about collective decision making: How can we map

the individual preferences of a group of agents into a joint decision?

Next we will see some examples, problems, ideas, paradoxes, or just

issues that illustrate the main question addressed in the course:

◮ How does collective decision making work?

The remainder of the course will then be devoted to developing

these rather vague ideas in a rigorous manner.
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Example from Voting

Suppose the plurality rule (as in most real-world situations) is used

to decide the outcome of an election: the candidate receiving the

highest number of votes wins.

Assume the preferences of the people in, say, Florida are as follows:

49%: Bush ≻ Gore ≻ Nader

20%: Gore ≻ Nader ≻ Bush

20%: Gore ≻ Bush ≻ Nader

11%: Nader ≻ Gore ≻ Bush

So even if nobody is cheating, Bush will win in a plurality contest.

Issue: In a pairwise contest , Gore would have defeated anyone.

Issue II: It would have been in the interest of the Nader supporters

to manipulate, i.e., to misrepresent their preferences.
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Condorcet Paradox

In 1785, the Marquis de Condorcet noticed a problem . . .

Agent 1: A ≻ B ≻ C

Agent 2: B ≻ C ≻ A

Agent 3: C ≻ A ≻ B

How should we aggregate the individual preferences of these three

agents into a social preference ordering?

A majority prefers A over B and a majority also prefers B over C,

but then again a majority prefers C over A.

So the social preference ordering induced by the seemingly natural

majority rule fails to be rational (it’s not transitive).

M. le Marquis de Condorcet. Essai sur l’application de l’analyse à la probabilté

des décisions rendues a la pluralité des voix. Paris, 1785
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Judgement Aggregation

Preferences are not the only structures that we may wish to

aggregate. JA studies the aggregation of judgements on logically

inter-connected propositions. Example:

A B C

Judge 1: yes yes yes

Judge 2: no yes no

Judge 3: yes no no

Majority: yes yes no

A: witness is reliable

B: if witness is reliable then guilty

C: guilty

note that A ∧ B → C

While each individual set of judgements is logically consistent, the

collective judgement produced by the majority rule is not.

Ch. List and Ph. Pettit. Aggregating Sets of Judgments: Two Impossibility

Results Compared. Synthese 140(1–2):207–235, 2004.
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Vickrey Auctions

We have seen that manipulation is a serious problem in voting. In

domains other than voting we can sometimes do better.

Suppose we want to sell a single item in an auction.

• First-price sealed-bid auction: each bidder submits an offer in a

sealed envelope; highest bidder wins and pays what they offered

• Vickrey auction: each bidder submits an offer in a sealed

envelope; highest bidder wins but pays second highest price

In the Vickrey auction each bidder has an incentive to submit their

truthful valuation of the item!

William Vickrey received the 1996 Nobel Prize in Economic

Sciences for “contributions to the economic theory of incentives”.

W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders.

Journal of Finance 16(1):8–37, 1961.
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Voting and Complexity

In a sense to be made precise (next week), the positive result for

the Vickrey auction cannot be transferred to the domain of voting:

it is impossible to incentivice agents to always vote truthfully.

But we can try to use complexity as a barrier against manipulation:

• For some voting rules it is computationally intractable to

compute my best (insincere) vote (even if I correctly guess

everybody else’s vote)—so I should probably vote sincerely.

Other applications of complexity theory in voting:

• People have come up with pretty complicated voting rules.

What is the complexity of determining the winner?

• How hard is it to check whether a given candidate can possibly

still win after part of the ballots have been counted?

• What is the complexity of bribery? of control by the chair?
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Electing a Committee

We have already seen that voting can be rather complicated: the

election winner may be less popular than some other candidate;

manipulation may be encouraged by the voting rule . . . here is a

further difficulty, this time of a computational nature.

Suppose we have to elect a committee (not just a single candidate):

• If there are k seats to be filled from a pool of m candidates,

then there are
(

m

k

)

possible outcomes.

• For k = 5 and m = 12, for instance, that’s 792 alternatives.

• The domain of alternatives has a combinatorial structure.

It does not seem reasonable to ask voters to submit their full

preferences over all alternatives to the collective decision making

mechanism. What would be a reasonable form of balloting?
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Preference Representation Languages

We will look into several languages for representing preferences.

When choosing a language, we should consider these criteria:

• Cognitive relevance: How close is a given language to the way

in which humans would express their preferences?

• Elicitation: How difficult is it to elicit the preferences of an

agent so as to represent them in the chosen language?

• Expressive power: Can the chosen language encode all the

preference structures we are interested in?

• Succinctness: How compact is the representation of (typical)

preferences? Is one language more succinct than another?

• Complexity: What is the computational complexity of related

decision problems, such as comparing two alternatives?
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Earth Observation Satellites

Our agents are representatives of different European countries that

have jointly funded a new Earth Observation Satellite (EOS). Now

the agents are requesting certain photos to be taken by the EOS,

but due to physical constraints not all requests can be honoured . . .

Allocations should be both efficient and fair :

• The satellite should not be underexploited.

• Each agent should get a return on investment that is at least

roughly proportional to their financial contribution.

This is an example for a multiagent resource allocation problem.

M. Lemâıtre, G. Verfaillie, and N. Bataille. Exploiting a Common Property

Resource under a Fairness Constraint: A Case Study. Proc. IJCAI-1999.

Ulle Endriss 16



Introduction COMSOC 2009

Efficiency and Fairness

When assessing the quality of an allocation (or any other decision)

we can distinguish two types of indicators of social welfare.

Aspects of efficiency (not in the computational sense) include:

• The chosen agreement should be such that there is no

alternative agreement that would be better for some and not

worse for any of the other agents (Pareto optimality).

• If preferences are quantitative, the sum of all payoffs should be

as high as possible (utilitarianism).

Aspects of fairness include:

• The agent that is going to be worst off should be as well off as

possible (egalitarianism).

• No agent should prefer to take the bundle allocated to one of

their peers rather than keeping their own (envy-freeness).

How do we formalise this? How do we compute optimal solutions?
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Summary

Computational social choice studies collective decision making,

with an emphasis on computational aspects. Work in COMSOC

can be broadly classified along two dimensions —

The kind of social choice problem studied, e.g.:

• aggregating individual preferences into a collective ordering

• electing a winner given individual preferences over candidates

• fairly dividing a cake given individual tastes

The kind of computational technique employed, e.g.:

• algorithm design to implement complex mechanisms

• complexity theory to understand limitations

• logical modelling to fully formalise intuitions

• KRR techniques to efficiently model social choice problems
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Part II: Arrow’s Theorem
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Arrow’s Impossibility Theorem

This is probably the most famous theorem in social choice theory.

It was first proved by Kenneth J. Arrow in his 1951 PhD thesis.

He later received the Nobel Prize in Economic Sciences in 1972.

The theorem shows that there can be no mechanism for

aggregating individual preferences into a social preference that

would simultaneously satisfy a small number of natural and

seemingly innocent axioms.

Our exposition of the theorem is taken from Barberà (1980); the

proof closely follows Geanakoplos (2005).

K.J. Arrow. Social Choice and Individual Values. 2nd edition, Wiley, 1963.

S. Barberà (1980). Pivotal Voters: A New Proof of Arrow’s Theorem. Eco-

nomics Letters, 6(1):13–16, 1980.

J. Geanakoplos. Three Brief Proofs of Arrow’s Impossibility Theorem. Eco-

nomic Theory, 26(1):211–215, 2005.
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Setting

• Finite set of alternatives A.

• Finite set of individuals I = {1, . . . , n}.

• A preference ordering is a strict linear order on A.

The set of all such preference orderings is denoted by P.

Each individual i has an individual preference ordering Pi,

and we will try to find a social preference ordering P .

• A preference profile P = 〈P1, . . . , Pn〉 ∈ Pn consists of a

preference ordering for each individual.

• A social welfare function (SWF) is a mapping from preference

profiles to social preference orderings: it specifies what

preferences society should adopt for any given situation.

• Remark: We implicitly assume that any individual preference

orderings are possible (universal domain assumption).
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Axioms

It seems reasonable to postulate that any SWF should satisfy the

following list of axioms:

• (WP) The SWF should satisfy the weak Pareto condition (aka.

unanimity): if everyone prefers x over y, then so should society.

(∀P ∈ Pn)(∀x, y ∈ A)[[(∀i ∈ I)xPiy] → xPy]

• (IIA) The SWF should satisfy independence of irrelevant

alternatives: social preference of x over y should not be affected

if individuals change their preferences over other alternatives.

(∀P ,P
′

∈ P
n)(∀x, y ∈ A)[[(∀i ∈ I)(xPiy ↔ xP

′

i y)] → (xPy ↔ xP
′

y)]

• (ND) The SWF should be non-dictatorial : no single individual

should be able to impose a social preference ordering.

¬(∃i ∈ I)(∀x, y ∈ A)(∀P ∈ Pn)[xPiy → xPy]
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The Result

Theorem 1 (Arrow, 1951) For three or more alternatives, there

exists no SWF that satisfies all of (WP), (IIA) and (ND).

Observe that if there are just two alternatives (|A| = 2), then it is

easy to find an SWF that satisfies all three axioms (at least for an

odd number of individuals): simply let the alternative preferred by

the majority of individuals also be the socially preferred alternative.

Now for the proof . . .
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Extremal Lemma

Assume (WP) and (IIA) are satisfied. Let b be any alternative.

Claim: For any profile in which b is ranked either top or bottom by

every individual, society must do the same.

Proof: Suppose otherwise; that is, suppose b is ranked either top or

bottom by every individual, but not by society.

(1) Then aPb and bPc for distinct alternatives a, b, c and the social

preference ordering P .

(2) By (IIA), this continues to hold if we move every c above a for

every individual, as doing so does not affect the extremal b.

(3) By transitivity of P , applied to (1), we get aPc.

(4) But by (WP), applied to (2), we get cPa. Contradiction. X
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Existence of an Extremal Pivotal Individual

Fix some alternative b. We call an individual extremal pivotal if it

can move b from the bottom to the top of the social preference

ordering (for some particular profile).

Claim: There exists an extremal pivotal individual i.

Proof: Start with a profile where every individual puts b at the

bottom. By (WP), so does society.

Then let the individuals change their preferences one by one,

moving b from the bottom to the top.

By the Extremal Lemma and (WP), there must be a point when

the change in preference of a particular individual causes b to rise

from the bottom to the top in the social ordering. X

Call the profile just before the switch in the social ordering

occurred Profile I , and the one just after the switch Profile II .
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Dictatorship: Case 1

Let i be the extremal pivotal individual (for alternative b).

The existence of i is guaranteed by our previous argument.

Claim: Individual i can dictate the social ordering with respect to any

alternatives a, c different from b.

Proof: Suppose i wants to place a above c.

Let Profile III be like Profile II, except that (1) i makes a its top choice

(that is, aPibPic), and (2) all the others have rearranged their relative

rankings of a and c as they please.

Observe that in Profile III all relative rankings for a, b are as in Profile I.

So by (IIA), the social rankings must coincide: aPb.

Also observe that in Profile III all relative rankings for b, c are as in

Profile II. So by (IIA), the social rankings must coincide: bPc.

By transitivity, we get aPc. By (IIA), this continues to hold if others

change their relative ranking of alternatives other than a, c. X
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Dictatorship: Case 2

Let b and i be defined as before.

Claim: Individual i can also dictate the social ordering with

respect to b and any other alternative a.

Proof: We can use a similar construction as before to show that for

a given alternative c, there must be an individual j that can dictate

the relative social ordering of a and b (both different from c).

But at least in Profiles I and II, i can dictate the relative social

ranking of a and b. As there can be at most one dictator in any

situation, we get i = j. X

So individual i will be a dictator for any two alternatives.

This contradicts (ND), and Arrow’s Theorem follows.
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Literature

There are several textbooks on (classical) social choice theory in

which you can find an exposition of Arrow’s Theorem; for example:

• W. Gaertner. A Primer in Social Choice Theory.

Oxford University Press, 2007.

• A.D. Taylor. Social Choice and the Mathematics of

Manipulation. Cambridge University Press, 2005.

(This is optional reading.)
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Literature

There is no textbook or similar for COMSOC. I will recommend

specific papers or book chapters in each lecture. For the general

feeling, you should also browse through some of these:

• Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet.

A Short Introduction to Computational Social Choice.

Proc. SOFSEM-2007.

• Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet.

Preference Handling in Combinatorial Domains: From AI to

Social Choice. AI Magazine, 29(4):37–46, 2008.

• Y. Chevaleyre et al. Issues in Multiagent Resource Allocation.

Informatica, 30:3–31, 2006.

• C.H. Papadimitriou. Algorithms, Games, and the Internet.

Proc. STOC-2001. (about algorithmic game theory)
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What next?

The main topics that we are going to cover in this course are:

• (Computational Issues in) Voting Theory

• Preference Handling in Combinatorial Domains

• Multiagent Resource Allocation and Fair Division

• Combinatorial Auctions and Mechanism Design
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