
Combinatorial Auctions COMSOC 2009

Computational Social Choice: Spring 2009

Ulle Endriss
Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1



Combinatorial Auctions COMSOC 2009

Plan for Today

Allocating goods to agents is a typical example for collective
decision making. Auctions are standardised methods for doing this.

• Overview: auction protocols for allocating a single item

• Introduction to combinatorial auctions as mechanisms for
deciding on the allocation of sets of items

• Analysis of the winner determination problem (which bidder
should obtain which items?) of combinatorial auctions in
detail: computational complexity and algorithms
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Basic Auction Theory

General setting for “simple” auctions:

• one seller (the auctioneer)

• many buyers

• one single item to be sold, e.g.

– a house to live in (private value auction)

– a house that you may sell on (correlated value auction)

There are many different auction mechanisms or protocols, even for
simple auctions . . .
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English Auctions

• Protocol: auctioneer starts with the reservation price; in each
round each agent can propose a higher bid; final bid wins

• Used to auction paintings, antiques, etc.

• Dominant strategy (for private value auctions): bid a little bit
more in each round, until you win or reach your own valuation

• Counterspeculation (how do others value the good on auction?)
is not necessary.

• Winner’s curse (in correlated value auctions): if you win but
have been uncertain about the true value of the good, should
you actually be happy?
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Dutch Auctions

• Protocol: the auctioneer starts at a very high price and lowers
it a little bit in each round; the first bidder to accept wins

• Used at the flower wholesale markets in Amsterdam.

• Intuitive strategy: wait for a little bit after your true valuation
has been called and hope no one else gets in there before you
(no general dominant strategy)

• Also suffers from the winner’s curse.
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First-price Sealed-bid (FPSB) Auctions

• Protocol: one round; sealed bid; highest bid wins
(for simplicity, we assume no two agents make the same bid)

• Used for public building contracts etc.

• Problem: the difference between the highest and second highest
bid is “wasted money” (the winner could have offered less).

• Intuitive strategy: bid a little bit less than your true valuation
(no general dominant strategy)
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Vickrey Auctions

• Proposed by William Vickrey in 1961 (Nobel Prize in
Economic Sciences in 1996)

• Protocol: one round; sealed bid; highest bid wins, but the
winner pays the price of the second highest bid

• Dominant strategy: bid your true valuation

– if you bid more, you risk paying too much

– if you bid less, you lower your chances of winning while still
having to pay the same price in case you do win

• Problem: counterintuitive (problematic for humans)

W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders.

Journal of Finance, 16(1):8–37, 1961.

Ulle Endriss 7



Combinatorial Auctions COMSOC 2009

Revenue for the Auctioneer

• Which protocol is best for the auctioneer?

• Revenue-equivalence Theorem (Vickrey, 1961):

All four protocols give the same expected revenue for
private value auctions amongst risk-neutral bidders with
valuations independently drawn from a uniform
distribution.

• Intuition: revenue ≈ second highest valuation:

– Vickrey: clear X

– English: bidding stops just after second highest valuation X

– Dutch/FPSB: because of the uniform value distribution, top
bid ≈ second highest valuation X

• But: this applies only to an artificial and rather idealised
situation; in reality there are many exceptions.
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Complements and Substitutes

The value an agent assigns to a bundle of goods may relate to the
value it assigns to the individual goods in a variety of ways . . .

• Complements: The value assigned to a set is greater than the
sum of the values assigns to its elements.

A standard example for complements would be a pair of shoes
(a left shoe and a right shoe).

• Substitutes: The value assigned to a set is lower than the sum
of the values assigned to its elements.

A standard example for substitutes would be a ticket to the
theatre and another one to a football match for the same night.

In such cases an auction mechanism allocating one item at a time is
problematic as the best bidding strategy in one auction may depend
on whether the agent can expect to win certain future auctions.
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Combinatorial Auction Protocol

• Setting: one seller (auctioneer) and several potential buyers
(bidders); many goods to be sold

• Bidding: the bidders bid by submitting their valuations to the
auctioneer (not necessarily truthfully)

• Clearing: the auctioneer announces a number of winning bids

The winning bids determine which bidder obtains which good,
and how much each bidder has to pay. No good may be
allocated to more than one bidder.
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Bidding Languages

• As there are 2n − 1 non-empty bundles for n goods, submitting
complete valuations may not be feasible.

• So we need a compact preference representation language
(OR/XOR, weighted formulas, k-additive form, . . . ).

• Today: (mostly) OR language, i.e., assume each bidder submits
a number of atomic bids (Bi, pi), specifying the price pi the
bidder is prepared to pay for a particular bundle Bi.

• In general, we may think of the bidding language as
determining a conflict graph: atomic bids are vertices and
edges connect bids that cannot be accepted together.
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The Winner Determination Problem

The winner determination problem (WDP) is the problem of
finding a set of winning atomic bids

(1) that is feasible (e.g., no item allocated twice) and

(2) that will maximise the sum of the prices offered.

The sum of prices can be given different interpretations:

(1) If the simple pricing rule is used where bidders pay what they
offered, then it is the revenue of the auctioneer.

(2) If the prices offered are interpreted as individual utilities, then
it is the utilitarian social welfare of the selected allocation.

Ulle Endriss 12



Combinatorial Auctions COMSOC 2009

Complexity of Winner Determination

The decision problem underlying the WDP is NP-complete:

Theorem 1 Let K ∈ Z. The problem of checking whether there
exists a solution to a given combinatorial auction instance
generating a revenue exceeding K is NP-complete.

This has first been stated by Rothkopf et al. (1998).

We have already seen a proof for this in the lecture on MARA:
the problem is equivalent to Welfare Optimisation. Recall that
proving NP-membership was easy and that NP-hardness followed
from a reduction from Set Packing.

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable

Combinational Auctions. Management Science, 44(8):1131–1147, 1998.
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Intractable Special Cases

There are various results that show that seemingly severe
restrictions of the WDP remain NP-hard . For instance:

Winner determination remains NP-hard if each bidder only
submits a single atomic bid and assigns it a price of 1.

This immediately follows from the specific reduction from Set

Packing that we have seen in an earlier lecture.

D. Lehmann, R. Müller, and T. Sandholm. The Winner Determination Prob-

lem. In P. Cramton et al. (eds.), Combinatorial Auctions, MIT Press, 2006.
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Tractable Special Cases

Another line of research has tried to identify special cases for which
the WDP becomes tractable. Such cases are characterised by
specific structural properties of the valuations that bidders report.

Here is an example:

Theorem 2 (Rothkopf et al., 1998) If the conflict graph is a
tree, then the WDP can be solved in polynomial time.

Proof sketch: Start from the leaves of the tree, going up. Accept a
bid iff it has a higher price than the best combination you can get
from its offspring. X

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable

Combinational Auctions. Management Science, 44(8):1131–1147, 1998.
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Solving the Winner Determination Problem

We have seen that the WDP is intractable (NP-complete) in its
general form. Nevertheless, sophisticated algorithms often manage
to solve even large CA instances in practice.

There are two types of approaches to optimal winner determination
in the general case:

• Use powerful general-purpose mathematical programming
(integer programming) software (next slide)

• Develop search algorithms specifically for winner
determination, combining general AI search techniques and
domain-specific heuristics (rest of this lecture)

Other options include developing special-purpose algorithms for
tractable subclasses (as discussed) and approximation algorithms
for the general case (which we won’t discuss here).
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Integer Programming Approach

Suppose bidders submit n bids as bundle/price pairs (Bi, pi) with
the implicit understanding that the auctioneer may accept any
combination of non-conflicting bids and charge the sum of the
associated prices (i.e., we are using the OR bidding language).

Introduce a decision variable xi ∈ {0, 1} for each bid (Bi, pi).

The WDP becomes the following Integer Programming problem:

I Maximise
n∑

i=1

pi · xi subject to
∑

i∈Bids(g)

xi ≤ 1 for all goods g,

where Bids(g) = {i ∈ [1, n] | g ∈ Bi}

Highly optimised software packages for mathematical programming
(such as CPLEX/ILOG) can often solve such problems efficiently.
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Search for an Optimal Solution

Next we are going to see how to customise well-known search
techniques developed in AI so as to solve the WDP.

This part of the lecture will largely follow the survey article by
Sandholm (2006).

T. Sandholm. Optimal Winner Determination Algorithms. In P. Cramton et

al. (eds.), Combinatorial Auctions, MIT Press, 2006.
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Search Techniques in AI

A generic approach to search uses the state-space representation:

• Represent the problem as a set of states and define moves
between states. Given an initial state, this defines a search tree.

• The goal states are states that correspond to valid solutions.

• Each move is associated with a cost (or a payoff ).

• A solution is a sequence of moves from the initial state to a
goal state with minimum cost (maximum payoff ).

• Example: route finding (states are cities and moves are directly
connecting roads), but it also applies to CAs . . .

A search algorithm defines the order in which to traverse the tree:

• Uninformed search: breadth-first, depth-first, iterat. deepening

• Heuristic-guided search: branch-and-bound, A*
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State Space and Moves

There are (at least) two natural ways of representing the state
space and moves between states:

• Either: Define a state as a set of goods for which an allocation
decision has already been made. Then making a move in the
state space amounts to making a decision for a further good.

• Or: Define a state as a set of atomic bids for which an
acceptance decision has already been made. In this case, a
move amounts to making a decision for a further bid.

What is the initial state? What are the goal states?

According to Sandholm (2006), the bid-oriented approach tends to
give better performance in practice.
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Moves in Bid-oriented Search

We represent bids as triples (ai, Bi, pi): agent ai is offering to buy
the bundle Bi for a price of pi.

The initial state is when no decisions on bids have been made.

A move amounts to making a decision (accept/reject) for a new bid.

The bidding language specifies which bids (if any) must be
accepted/rejected given earlier decisions. Examples:

• For both the OR and the XOR language: only accept bids with
empty intersection of bundles.

• For the XOR language: accept at most one bid per agent .

We are in a goal state once a decision for every bid has been made
(some of which will be consequences of the explicit choices).

Observe that that the search tree will be binary (accept or reject?).
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Example

Source: Sandholm (2006)
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Uninformed Search

Uninformed search algorithms (in particular depth-first search) can
be used to find a solution with a given minimum revenue: traverse
the tree and keep the best solution encountered so far in memory.

Optimality can only be guaranteed if we traverse the entire search
tree (not feasible for interesting problem instances).
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Heuristic-guided Search

In the worst case, any algorithm may have to search the entire
search tree. But good heuristics, that tell us which part of the tree
to explore next, often allow us to avoid this in practice.

For any node N in the search tree, let g(N) be the revenue
generated by accepting (only) the bids accepted according to N .

We are going to need a heuristic that allows us to estimate for
every node N how much revenue over and above g(N) can be
expected if we pursue the path through N . This will be denoted as
h(N). The more accurate the estimate, the better — but the only
strict requirement is that h never underestimates the true revenue.

We are going to describe two algorithms using such heuristics:

• depth-first branch-and-bound

• the A* algorithm
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Heuristic Upper Bounds on Revenue

Sandholm (2006) discusses several ways of defining a heuristic
function h such that g(N) + h(N) is guaranteed to be an upper
bound on revenue for any path through node N .

Here is one such heuristic function:

• For each good g, compute its maximum contribution as:

c(g) = max{ p

|B|
| (B, p) ∈ Bids and g ∈ B}

• Then define h(N) as the sum of all c(g) for those goods g that
have not yet been allocated in N .

This is indeed an upper bound (why?).

Ulle Endriss 25



Combinatorial Auctions COMSOC 2009

Depth-first Branch-and-Bound

This algorithm works like basic (uninformed) depth-first search,
except that branches that have no chance of developing into an
optimal solution get pruned on the fly:

• Traverse the search tree in depth-first order.

• Keep track of which of the nodes encountered so far would
generate maximum revenue. Call that node N∗.

• If a node N with g(N) + h(N) ≤ g(N∗) is encountered, remove
that node and all its offspring from the search tree.

This is correct (guarantees that the optimal solution does not get
removed) whenever the heuristic function h is guaranteed never to
underestimate expected marginal revenue (why?).
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The A* Algorithm

The A* algorithm (Hart et al., 1968) is probably the most famous
search algorithm in AI. It works as follows:

• The fringe is the set of leaf nodes of the subtree visited so far
(initially just the root node).

• Compute f(N) = g(N) + h(N) for every node N in the fringe.

• Expand the node N maximising f(N); that is, remove it from
the fringe and add its (two) immediate children instead.

By a standard result in AI, A* with an admissible heuristic
function (here: h never underestimates marginal revenue) is
optimal: the first solution found (when no bids are left) will
generate maximum revenue.
P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic De-

termination of Minimum Cost Paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, 1968.
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Branching Heuristics

So far, we have not specified which bid to select for branching in
each round (for any of our algorithms). This choice does not affect
correctness, but it may affect speed.

There are two basic heuristics for bid selection:

• Select a bid with a high price and a low number of items.

• Select a bid that would decompose the conflict graph of the
remaining bids (if available).
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Tractable Subproblems

As a final example for possible fine-tuning of the algorithm, we can
try to identify tractable subproblems at nodes and solve them using
special-purpose algorithms.

Here are two very simple examples:

• If the bid conflict graph is complete, i.e., any pair of remaining
bids is in conflict, then only one of them can be accepted.
; Simply pick the one with the highest price.

• If the bid conflict graph has no edges, then there is no conflict
between any of the remaining bids.
; Accept all remaining bids (assuming positive prices).
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Summary

• Quick introduction to basic auction theory: English, Dutch,
first-price sealed-bid, and Vickrey auctions; revenue equivalence

• Combinatorial auctions are mechanisms to allocate a number of
indivisible goods to a number of agents.

• Winner determination in CAs is NP-complete (in general).

• We have seen both special cases that are still NP-complete,
and others that are tractable.

• The WDP can be solved by off-the-shelf integer programming
tools as well as specialised AI search techniques.

• Our criterion for optimality has been maximum revenue.
Alternatively, we could try to optimise wrt. a social welfare
ordering (observe that revenue and utilitarian social welfare
coincide in case bidders submit true and complete valuations).
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What next?

Today we have looked into the computational and the algorithmic
aspects of combinatorial auctions. Next week we are going to deal
with the game-theoretical side of combinatorial auctions:

• Mechanism Design
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