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• Voting
Input: Preference of agents over a set of candidates or outcomes

Output: one candidate or outcome (or a set)

• Tournament
Input: Binary relation between outcomes or candidates

Output: One candidate or outcome (or a set)

When no ties are allowed between any two alternatives.
Either x beats y or y beats x.

which are the best outcomes?
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Notations

X is a finite set of alternatives.
T is a relation on X, i.e, T ⊂ X2.
notation: (x, y) ∈ T ⇔ xTy ⇔ x→ y ⇔ x “beats" y
T(X) is the set of tournaments on X
T+(x) = {y ∈ X | xTy}: successors of x.
T−(x) = {y ∈ X | yTx}: predessors of x.
s(x) = #T+(x) is the Copeland score of x.
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Definition (Tournament)
The relation T is a tournament iff

1 ∀x ∈ X (x, x) /∈ T
2 ∀(x, y) ∈ X2 x 6= y ⇒ [((x, y) ∈ T ) ∨ ((y, x) ∈ T )]
3 ∀(x, y) ∈ X2 (x, y) ∈ T ⇒ (y, x) /∈ T .

A tournament is a complete and asymmetric binary relation

Majority voting and tournament:
• I finite set of individuals. The preference of an individual i is
represented by a complete order Pi defined on X.
• The outcome of majority voting is the binary relation M(P ) on X
such that ∀(x, y) ∈ X, xM(P )y ⇔ #{i ∈ I|xPiy} > #{i ∈ I|yPix}
If initial preferences are strict and number of individual is odd,
M(P ) is a tournament.
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Example (cyclone of order n)

Zn set of integers modulo n.
xCny ⇔ y − x ∈

{
1, . . . , n−1

2

}
T+(1) = {2, 3, 4}
T−(1) = {5, 6, 7}

1
2

3

4

5
6

7
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Definition (isomorphism)
Let X and Y be two sets, T ∈ T(X), U ∈ T(Y ) two tournaments on X
and Y .
A mapping φ : X → Y is a tournament isomorphism iff

φ is a bijection
∀(x, y) ∈ X2, xTx′ ⇔ φ(x)Uφ(x′)

On a set X of cardinal n, there are 2
n·(n−1)

2 tournaments, but many of
them are isomorphic.

n 2
n(n−1)

2
number of

non-isomorphic tournaments
8 268,435,456 6,880
10 35,184,372,088,832 9,733,056
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Condorcet principle

Definition (Condorcet winners)
Let T ∈ T(X). The set of Condorcet winners of T is

Condorcet(T ) = {x ∈ X | ∀y ∈ X, y 6= x⇒ xTy}

Property
Either Condorcet(T ) = ∅ or Condorcet(T ) is a singleton.
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Definition (Tournament solution)
A tournament solution S associates to any tournament T(X) a subset
S(T ) ⊂ X and satisfies
∀T ∈ T(X), S(T ) 6= ∅
For any tournament isomorphism φ, φoS = Soφ (anonymity)
∀T ∈ T(X), Condorcet(T ) 6= ∅ ⇒ S(T ) = Condorcet(T )

For S , S1, S2 tournament solutions.
S1oS2(T ) = S1(T/S2(T )) = S1(S2(T ))

S1 = S , Sk+1 = SoSk, S∞ = lim
k→∞

Sk

solutions may be finer/more selective:
S1 ⊂ S2 ⇔ ∀T ∈ T(X) S1(T ) ⊂ S2(T ) than S2.

solutions may be different:
S1∅S2 ⇔ ∃T ∈ T | S1(T ) ∩S2(T ) = ∅

solution may have common elements:
S1 ∩S2 ⇔ ∀T ∈ T | S1(T ) ∩S2(T ) 6= ∅
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A first solution: the Top Cycle (TC)

Definition (Top Cycle)
The top cycle of T ∈ T(X) is the set TC defined as

TC(T ) =

x ∈ X | ∀y ∈ X, ∃k > 0

∃(z1, . . . , zk) ∈ Xk,
z1 = x, zk = y,
and
1 ≤ i < j ≤ k ⇒ ziTzj


The top cycle contains outcomes that beat directly or indirectly every
other outcomes.

x z2 z3 y
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Properties of Solutions

Regular
Monotonous
Independent of the losers
Strong Superset Property
Idempotent
Aïzerman property
Composition-consistent and weak composition-consistent
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Definition (Regular tournament)
A tournament is regular iff all the points have the same Copeland score.

Definition (Monotonous)
A solution S is monotonous iff ∀T ∈ T(X), ∀x ∈ S(T ), ∀T ′ ∈ T(X)

such that
{
T ′/X \ {x} = T/X \ {x}
∀y ∈ X, xTY ⇒ xT ′y

one has x ∈ S(T ′)

“Whenever a winner is reinforced, it does not become a loser.”
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Definition (Independence of the losers)
A solution S is independent of the losers iff ∀T ∈ T(X), ∀T ′ ∈ T(X)
such that ∀x ∈ S(T ), ∀y ∈ X, xTy ⇔ xT ′y
one has S(T ) = S(T ′).

“the only important relations are
{

winners to winners
winners to losers ”

“What happens between losers do not matter.”

Definition (Strong Superset Property (SSP))
A solution S satisfies the Strong Superset Property (SSP) iff
∀T ∈ T(X), ∀Y | S(T ) ⊂ Y ⊂ X
one has S(T ) = S(T/Y )

“We can delete some or all losers, and the set of winners does not change”
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Definition (Idempotent)
A solution S is idempotent iff SoS = S .

X
S(T )

Definition (Aïzerman property)
A solution S satisfies the Aïzerman property iff ∀T ∈ T(X), ∀Y ⊂ X
S(T ) ⊂ Y ⊂ X ⇒ S(T/Y ) ⊂ S(T )

X
Y

S(T )
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Solution Concepts

Copeland solution (C)
the Long Path (LP)
Markov solution (MA)
Slater solution (SL)
Uncovered set (UC)
Iterations of the Uncovered set (UC∞)
Dutta’s minimal covering set (MC)
Bipartisan set (BP)
Bank’s solution (B)
Tournament equilibrium set (TEQ)

method for ranking

based on the notion of
covering

Game theory based

Based on Contestation
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TC UC UC∞ MC BP B TEQ SL C

Monotonicity ?
Independence of the losers ?

Idempotency ?
Aïzerman property ?

Strong superset property ?
Composition-consistency
Weak Comp.-consist.

Regularity
Copeland value 1 1 1/2 1/2 1/2 ≤ 1/3 ≤ 1/3 1/2 1
Complexity O(n2) O(n2.38) P NP-hard NP-hard NP-hard O(n2)
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TC UC UC∞ MC BP B TEQ C
UC ⊂
UC∞ ⊂ ⊂
MC ⊂ ⊂ ⊂
BP ⊂ ⊂ ⊂ ⊂
B ⊂ ⊂ ∩ ∩ a

TEQ ⊂ ⊂ ⊂ b a ⊂
C ⊂ ⊂ ∅ ∅ ∅ ∅ ∅
SL ⊂ ⊂ ∅ ∅ ∅ ∅ ∅ ∅

a ∃T ∈ T29 | B(T ) ⊂ BP (T ) and B(T ) 6= BP (T )
∃T ′ ∈ T6 | BP (T ′) ⊂ B(T ′) and B(T ′) 6= BP (T ′).
It is unknown if B ∩ BP can be empty.
Same for TEQ and BP.

b TEQ ⊂ MC is a conjecture
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Recall: Copeland score s(x) = |T+(x)| = |{y ∈ X | xTy}|
s(x) is the number of alternatives that x beats.

Definition (Copeland solution (C))
Copeland winners of T ∈ T(X) is
C(T ) = {x ∈ X | ∀y ∈ X, s(y) = s(x)}

a

b c

d e

3

2 2

2 1
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Definition (Slater, Kandall, or Hamming distance)
Let (T, T ′) ∈ T(X)

∆(T, T ′) =
1
2

#
{

(x, y) ∈ X2 |xTy ∧ yT ′x
}

How many arrows are flipped in the tournament graph?

Definition (Slater order)
Let T ∈ T(X).
A Slater order for T is a linear order U ∈ L (X) such that

∆(T,U) = min
V ∈L (X)

{∆(T, V )}

where L (X) is the set of linear order over X.
The set of Slater winners of T , noted SL(T ), is the set of alternatives
in X that are Condorcet winner of a Slater order for T .

idea: approximate the tournament by a linear order.
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a

b c

d e

a

b c

d e

a � b � d � c � e
a

b c

d e

a

b c

d e

a

b c

d e

a

b c

d e

b � c � a � d � e c � a � b � d � e d � c � a � e � b e � a � b � d � c

to make b, c, d a Condorcet winner, it needs “3 flips”
to make e a Condorcet winner, it needs “4 flips”
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Theorem
Computing a Slater ranking is NP-hard.
Noga Alon. Ranking tournaments. SIAM Journal of Discrete Mathemat-
ics, 20(1):137-142, 2006

Vincent Conitzer, Computing Slater Rankings using similarities among
candidates, AAAI, 2006
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Definition (Covering)
Let T ∈ T(X) and (x, y) ∈ X2

x covers y in X iff [xTy and (∀z ∈ X, yTz ⇒ xTz)]
We note xB y

Definition (Equivalent definition of covering)
xB y iff xTy and ∀z ∈ X, T/{x,y,z} is transitive.
xB y iff x 6= y and T+(y) ⊂ T+(x)
xB y iff x 6= y and T−(x) ⊂ T−(y)
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Definition (Uncovered Set (UC))
The uncovered set of T is UC(T ) = {x ∈ X | @y ∈ X | y B x}
Miller. Graph Theoretical approaches to the Theory of Voting. American
Journal of Political Sciences, 21:769-803, 1977

Fishburn. Condorcet social choice functions. SIAM Journal of Applied
Mathematics, 33:469–489, 1977

Any outcome x in the Uncovered Set either beats y, or beats some z
that beats y (x beats any other outcome it at most two steps).
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a

b c

d e
tournament

a

b c

d e
covering relation B

UC(T ) = {a, b, c, d}
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Proposition
∀x ∈ X \ UC(X), UC∞(X) = UC∞(X \ {x})

Find a covered alternative, remove it, continue...
a

b c

d

T/{a,b,c,d}

a

b c

d

covering relation B
UC(T/{a,b,c,d}) = {a, b, c}

a

b c

T/{a,b,c}

a

b c

covering relation B
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Definition (Covering set)
Let T ∈ T(X) and Y ⊂ X.
Y is a Covering set for T iff ∀x ∈ X \ Y , x /∈ UC(Y ∪ {x}).

(x is covered by some elements in Y )
C(T ) is the family of covering sets for T .

Proposition
∀k ∈ (N ∪∞), UCk(T ) is a covering set for T .

proposition
The family C(T) admits a minimal element (by inclusion) called the
minimal covering set of T and denoted by MC(T ).

Dutta B. Covering sets and a new Condorcet choice correspondence. Jour-
nal of Economic Theory 44(1):63-80, 1988
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MC ⊂ UC∞ and MC 6= UC∞

1 2 3

1’ 2’ 3’

UC(T ) = X = UC∞(T )

MC(T ) = {1, 2, 3}
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Definition (tournament game)
A tournament game is a finite symmetric two-player game (X, g) such
that, ∀(x, y) ∈ X2

g(x, y) + g(y, x) = 0 (zero-sum game)
x 6= y ⇒ g(x, y) ∈ {−1, 1}

T ∈ T(X)↔ tournament game (X, g)
with ∀(x, y) ∈ X2, xTy iff g(x, y) = +1

Propositions
y is a Condorcet winner ⇒ ∀x ∈ X, y is a best response to x.

y is not a Condorcet winner ⇒ ∀x |xTy, x is a best response to y.

(x, y) is a pure Nash equilibrium iff
{

x = y
x is a Condorcet winner

x dominates y in (X, g)⇔ x covers y
UC(T ) is the set of undominated strategies
UC∞(T ) is the set of strategies not sequentially dominated.
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Theorem
A tournament game has a unique Nash equilibrium in mixed strategy,
and this equilibrium is symmetric.

Definition (Bipartisan Set)
Let T ∈ T(X).
The Bipartisan set BP (X) is the support of the unique mixed
equilibrium of the tournament game associated with T .
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a

b c

d e

� a b c d e

a 0 1 -1 1 1
b -1 0 1 1 -1
c 1 -1 0 -1 1
d -1 -1 1 0 1
e -1 1 -1 -1 0
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Is y a good outcome?

y T+(y)T+(y)T−(y)
S

(T
−
(y

))

For a solution tournament S and T ∈ T(X),
∀(x, y) ∈ X2 xD(S , T )y ⇔ x ∈ S(T |T−(y))
x is a contestation of y for T according to S .
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Bank’s set
There exists a unique tournament solution B such that

∀T ∈ T(X), o(T ) ≥ 2⇒ B(T ) = D(B, T )−(X)

D(B, T )−(X) is the set of points in X which are contestation of some
point of X according to S .

Proposition
x ∈ B(T ) iff ∃Y ⊂ X such that x ∈ Y and T |Y i an ordering for which
x is the winner and no point of X beats all the points of Y .
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a

b c

d e

a Y = {d}, a � d and aTb, dTc, aTe.

b Y = {d, c}, b � d � c and cTa, cTe.

c Y = {a}, c � a and aTb, aTd, aTe.

d Y = {c, e}, d � c � e and cTa, eTb.
e Y = {b} no because of aTb and aTe.
Y = {b, c} not an ordering.

B(T ) = {a, b, c, d}
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a

b c

d e

a

e a

a

a b

d

c d

b

b

b d

d e

c

a c

c

a

a b

b d

c

e c

d

c

c a

a b

d

d e

e

e b

b

b d

c

a c
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Definition (Algebraic solution)
A tournament solution S is computable by a binary tree if, for any
order n, there exists a labelled binary tree (N,A, i) of order n such
that, for any tournament T ∈ T(X) of order n, S(T ) is the set of
winners of T along (N,T, i) for all drawing of X.
S is computable by a binary tree iff S is algebraic.

• Any algebraic tournament solution selects a winner in the top cycle.
• The Copeland and Markov solutions are not algebraic.
• Strengthening a winner can make her lose.
• There exists a non monotonous algebraic tournament solution.

Miller. Graph Theoretical approaches to the Theory of Voting. American
Journal of Political Sciences, 21:769-803,1977

McKelvey, Niemi. A multistage game representation of sophisticated vot-
ing for binary procedures. Journal of Economic Theory 18:1-22,1978
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Multistage elimination tree or sophisticated agenda

Γn(1, 2, . . . , n)

Γn−1(1, 2, . . . , n− 1)Γn−1(1, 2, . . . , n− 1, n)

Γ2(1, 2)

12

Γ2(1, 2, 3)

1213

Γ2(1, 2, 3, 4)

12131214

Miller. Graph Theoretical approaches to the Theory of Voting. American
Journal of Political Sciences, 21:769-803,1977

Hervé Moulin. Dominance Solvable Voting Schemes, Econometrica,
47(6):1337-1352,1979
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Sophisticated voting on simple agendas

a(4) a(3)
a(2)

a(1)

Γk(a): outcome of strategic voting on the simple agenda of order k with
agenda a

a−n = a(1) · a(2) . . . a(n− 2) · a(n− 1)

a−(n−1) = a(1) · a(2) . . . a(n− 2) · a(n) . . . a(n)

Voting for a(n) or a(n− 1) ⇒ Comparing Γn−1(a−n) and Γn−1(a−(n−1)), i.e.,
Γn(a) = Γn−1(a−n) · Γn−1(a−(n−1))

Sophisticated agenda and sophisticated voting
Strategic voting one a simple agenda results in choosing the winner of
the associated sophisticated agenda.

Stéphane Airiau (ILLC) COMSOC 2009 42 / 47



Property
Let B the set of all permutations of X = {1, . . . , n}
Let a ∈ B, w(Γn, T, a) is the winner of the tournament T ∈ T(X) along
the sophisticated agenda Γn for the drawing a.

{w(Γn, T, a), a ∈ B} = Bank(T )
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Knockout tournaments

Definition (General Knockout Tournament)
Given a set N of players and a matrix P such that Pij denotes the
probability that player i wins against player j in a pairwise elimination
match and ∀(i, j) ∈ N2 0 ≤ Pij = 1− Pji ≤ 1,
a knockout tournament KTN = (T, S) is defined by:

A tournament structure T : a binary tree with |N| leaf nodes
A seeding S: a bijection between the players in N and the leaf
nodes of T

Theorem
It is NP-complete to decide whether there exists a tournament structure
KT with round placement R such that a target player k ∈ N will win
the tournament.

Thuc Vu, Alon Altman, Yoav Shoham, “On the Complexity of Schedule
Control Problems for Knockout Tournaments”, AAMAS 2009
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Properties
For Bipartisan set, minimal covering set, iterated uncovered set and the
top cycle

if ∃ a Condorcet winner, the winner is unique (definition)
if @ a Condorcet winner, the set of winners contains at least 3
alternatives.

Properties
If all tournaments are equiprobable, the top cycle is almost surely the
whole set of alternatives.
Probability that every alternative is in the Banks set in a random
tournament goes to one as the number of alternatives goes to infinity.
(every alternative is in the Banks set in almost all tournaments).
Mark Fey. Choosing from a large tournament, Social Choice and Welfare,
31(2):301–309
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