Introduction to Tournaments

Stéphane Airiau

ILLC
COMSOC 2009

- Voting

Input: Preference of agents over a set of candidates or outcomes
Output: one candidate or outcome (or a set)

- Tournament

Input: Binary relation between outcomes or candidates
Output: One candidate or outcome (or a set)

When no ties are allowed between any two alternatives.
Either x beats y or y beats x.
which are the best outcomes?

Notations

- X is a finite set of alternatives.
- T is a relation on X, i.e, $T \subset X^{2}$.
- notation: $(x, y) \in T \Leftrightarrow x T y \Leftrightarrow x \rightarrow y \Leftrightarrow x$ "beats" y
- $\mathscr{T}(X)$ is the set of tournaments on X
- $T^{+}(x)=\{y \in X \mid x T y\}$: successors of x.
- $T^{-}(x)=\{y \in X \mid y T x\}$: predessors of x.
- $s(x)=\# T^{+}(x)$ is the Copeland score of x.

Definition (Tournament)

The relation T is a tournament iff
(1) $\forall x \in X(x, x) \notin T$
(2) $\forall(x, y) \in X^{2} x \neq y \Rightarrow[((x, y) \in T) \vee((y, x) \in T)]$
(3) $\forall(x, y) \in X^{2}(x, y) \in T \Rightarrow(y, x) \notin T$.

A tournament is a complete and asymmetric binary relation

Majority voting and tournament:

- I finite set of individuals. The preference of an individual i is represented by a complete order P_{i} defined on X.
- The outcome of majority voting is the binary relation $M(P)$ on X such that $\forall(x, y) \in X, x M(P) y \Leftrightarrow \#\left\{i \in I \mid x P_{i} y\right\}>\#\left\{i \in I \mid y P_{i} x\right\}$ If initial preferences are strict and number of individual is odd, $M(P)$ is a tournament.

Example (cyclone of order n)

Z_{n} set of integers modulo n.

$$
\begin{aligned}
& x C_{n} y \Leftrightarrow y-x \in\left\{1, \ldots, \frac{n-1}{2}\right\} \\
& T^{+}(1)=\{2,3,4\} \\
& T^{-}(1)=\{5,6,7\}
\end{aligned}
$$

Definition (isomorphism)

Let X and Y be two sets, $T \in \mathscr{T}(X), U \in \mathscr{T}(Y)$ two tournaments on X and Y.
A mapping $\phi: X \rightarrow Y$ is a tournament isomorphism iff

- ϕ is a bijection
- $\forall(x, y) \in X^{2}, x T x^{\prime} \Leftrightarrow \phi(x) U \phi\left(x^{\prime}\right)$

On a set X of cardinal n, there are $2^{\frac{n \cdot(n-1)}{2}}$ tournaments, but many of them are isomorphic.

n	$2^{\frac{n(n-1)}{2}}$	number of
		non-isomorphic tournaments
8	$268,435,456$	6,880
10	$35,184,372,088,832$	$9,733,056$

Outline

(1) Introduction: Reasoning about pairwise competition
(2) Desirable properties of solution concepts
(3) Solution based on scoring and Ranking
(4) Solutions based on Covering
(5) Solution based on Game Theory
(6) Contestation Process
(7) Knockout tournaments
(8) Notes on the size of the choice set

Condorcet principle

Definition (Condorcet winners)

Let $T \in \mathscr{T}(X)$. The set of Condorcet winners of T is

$$
\operatorname{Condorcet}(T)=\{x \in X \mid \forall y \in X, y \neq x \Rightarrow x T y\}
$$

Property

Either $\mathscr{C o n d o r c e t}(T)=\emptyset$ or $\mathscr{C o n d o r c e t}(T)$ is a singleton.

Definition (Tournament solution)

A tournament solution \mathscr{S} associates to any tournament $\mathscr{T}(X)$ a subset $\mathscr{S}(T) \subset X$ and satisfies

- $\forall T \in \mathscr{T}(X), \mathscr{S}(T) \neq \emptyset$
- For any tournament isomorphism $\phi, \phi o \mathscr{S}=\mathscr{S}_{o \phi}$ (anonymity)
- $\forall T \in \mathscr{T}(X), \mathscr{C o n d o r c e t}(T) \neq \emptyset \Rightarrow \mathscr{S}(T)=\mathscr{C o n d o r c e t}(T)$

For $\mathscr{S}, \mathscr{S}_{1}, \mathscr{S}_{2}$ tournament solutions.

- $\mathscr{S}_{1} o \mathscr{S}_{2}(T)=\mathscr{S}_{1}\left(T / \mathscr{S}_{2}(T)\right)=\mathscr{S}_{1}\left(\mathscr{S}_{2}(T)\right)$
- $\mathscr{S}^{1}=\mathscr{S}, \mathscr{S}^{k+1}=\mathscr{S} o \mathscr{S}^{k}, \mathscr{S}^{\infty}=\lim _{k \rightarrow \infty} \mathscr{S}^{k}$
- solutions may be finer/more selective:

$$
\mathscr{S}_{1} \subset \mathscr{S}_{2} \Leftrightarrow \forall T \in \mathscr{T}(X) \mathscr{S}_{1}(T) \subset \mathscr{S}_{2}(T) \text { than } \mathscr{S}_{2}
$$

- solutions may be different:

$$
\mathscr{S}_{1} \varnothing \mathscr{S}_{2} \Leftrightarrow \exists T \in \mathscr{T} \mid \mathscr{S}_{1}(T) \cap \mathscr{S}_{2}(T)=\emptyset
$$

- solution may have common elements:

$$
\mathscr{S}_{1} \cap \mathscr{S}_{2} \Leftrightarrow \forall T \in \mathscr{T} \mid \mathscr{S}_{1}(T) \cap \mathscr{S}_{2}(T) \neq \emptyset
$$

A first solution: the Top Cycle (TC)

Definition (Top Cycle)

The top cycle of $T \in \mathscr{T}(X)$ is the set $T C$ defined as

$$
T C(T)=\left\{\begin{array}{l|l}
x \in X \mid \forall y \in X, \exists k>0 & \begin{array}{l}
\exists\left(z_{1}, \ldots, z_{k}\right) \in X^{k} \\
z_{1}=x, z_{k}=y \\
\text { and } \\
1 \leq i<j \leq k \Rightarrow z_{i} T z_{j}
\end{array}
\end{array}\right\}
$$

The top cycle contains outcomes that beat directly or indirectly every other outcomes.

Properties of Solutions

- Regular
- Monotonous
- Independent of the losers
- Strong Superset Property
- Idempotent
- Aïzerman property
- Composition-consistent and weak composition-consistent

Definition (Regular tournament)

A tournament is regular iff all the points have the same Copeland score.

Definition (Monotonous)

A solution \mathscr{S} is monotonous iff $\forall T \in \mathscr{T}(X), \forall x \in \mathscr{S}(T), \forall T^{\prime} \in \mathscr{T}(X)$ such that $\left\{\begin{array}{l}T^{\prime} / X \backslash\{x\}=T / X \backslash\{x\} \\ \forall y \in X, x T Y \Rightarrow x T^{\prime} y\end{array}\right.$ one has $x \in \mathscr{S}\left(T^{\prime}\right)$
"Whenever a winner is reinforced, it does not become a loser."

Definition (Independence of the losers)

A solution \mathscr{S} is independent of the losers iff $\forall T \in \mathscr{T}(X), \forall T^{\prime} \in \mathscr{T}(X)$ such that $\forall x \in \mathscr{S}(T), \forall y \in X, x T y \Leftrightarrow x T^{\prime} y$ one has $\mathscr{S}(T)=\mathscr{S}\left(T^{\prime}\right)$.
"the only important relations are $\left\{\begin{array}{l}\text { winners to winners "" } \\ \text { winners to losers }\end{array}\right.$ "What happens between losers do not matter."

Definition (Strong Superset Property (SSP))

A solution \mathscr{S} satisfies the Strong Superset Property (SSP) iff $\forall T \in \mathscr{T}(X), \forall Y \mid \mathscr{S}(T) \subset Y \subset X$ one has $\mathscr{S}(T)=\mathscr{S}(T / Y)$
"We can delete some or all losers, and the set of winners does not change"

Definition (Idempotent)

A solution \mathscr{S} is idempotent iff \mathscr{S} o $\mathscr{S}=\mathscr{S}$.

$$
\mathscr{S}(T)
$$

Definition (Aïzerman property)

A solution \mathscr{S} satisfies the Aïzerman property iff $\forall T \in \mathscr{T}(X), \forall Y \subset X$ $\mathscr{S}(T) \subset Y \subset X \Rightarrow \mathscr{S}(T / Y) \subset \mathscr{S}(T)$

$$
X \quad Y \quad \mathscr{S}(T)
$$

Solution Concepts

- Copeland solution (C)
- the Long Path (LP)
- Markov solution (MA)
- Slater solution (SL)
- Uncovered set (UC)
- Iterations of the Uncovered set $\left(U C^{\infty}\right)$
- Dutta's minimal covering set (MC)
- Bipartisan set (BP)

Game theory based

- Bank's solution (B)
- Tournament equilibrium set (TEQ)

Based on Contestation

	TC	UC	UC^{∞}	MC	BP	B	TEQ	SL	C
Monotonicity	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark
Independence of the losers	\checkmark	X	X	\checkmark	\checkmark	X	?	X	X
Idempotency	\checkmark	X	\checkmark	\checkmark	\checkmark	X	?	X	X
Aïzerman property	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	?	X	X
Strong superset property	\checkmark	X	X	\checkmark	\checkmark	X	?	X	X
Composition-consistency	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	X
Weak Comp.-consist.	\checkmark	X							
Regularity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	X	\checkmark	X
Copeland value	1	1	$1 / 2$	$1 / 2$	1/2	$\leq 1 / 3$	$\leq 1 / 3$	$1 / 2$	1
Complexity	$O\left(n^{2}\right)$	$O\left(n^{2.38}\right)$	\mathcal{P}			$\mathcal{N} \mathcal{P}$-hard	$\mathcal{N} \mathcal{P}$-hard	\mathcal{N} P-hard	$O\left(n^{2}\right)$

	TC	UC	UC^{∞}	MC	BP	B	TEQ	C
UC	C							
UC^{∞}	C	\subset						
MC	C	\subset	C					
BP	C	\subset	\subset	\subset				
B	\subset	\subset	\cap	\cap	a			
TEQ	\subset	\subset	\subset	b	a	\subset		
C	\subset	\subset	\varnothing	\varnothing	\varnothing	\varnothing	\varnothing	
SL	C	\subset	\varnothing	\varnothing	\varnothing	\varnothing	\varnothing	\varnothing

a $\exists T \in \mathscr{T}_{29} \mid B(T) \subset B P(T)$ and $B(T) \neq B P(T)$ $\exists T^{\prime} \in \mathscr{T}_{6} \mid B P\left(T^{\prime}\right) \subset B\left(T^{\prime}\right)$ and $B\left(T^{\prime}\right) \neq B P\left(T^{\prime}\right)$. It is unknown if $B \cap B P$ can be empty.
Same for TEQ and BP.
b $T E Q \subset M C$ is a conjecture

Outline

(1) Introduction: Reasoning about pairwise competition
(2) Desirable properties of solution concepts
(3) Solution based on scoring and Ranking
4) Solutions based on Covering
(5) Solution based on Game Theory
(6) Contestation Process
(7) Knockout tournaments
(5) Notes on the size of the choice set

Recall: Copeland score $s(x)=\left|T^{+}(x)\right|=|\{y \in X \mid x T y\}|$ $s(x)$ is the number of alternatives that x beats.

Definition (Copeland solution (C))

Copeland winners of $T \in \mathscr{T}(X)$ is
$C(T)=\{x \in X \mid \forall y \in X, s(y)=s(x)\}$

Definition (Slater, Kandall, or Hamming distance)

Let $\left(T, T^{\prime}\right) \in \mathscr{T}(X)$
$\Delta\left(T, T^{\prime}\right)=\frac{1}{2} \#\left\{(x, y) \in X^{2} \mid x T y \wedge y T^{\prime} x\right\}$
How many arrows are flipped in the tournament graph?

Definition (Slater order)

Let $T \in \mathscr{T}(X)$.
A Slater order for T is a linear order $U \in \mathscr{L}(X)$ such that

$$
\Delta(T, U)=\min _{V \in \mathscr{L}(X)}\{\Delta(T, V)\}
$$

where $\mathscr{L}(X)$ is the set of linear order over X.
The set of Slater winners of T, noted $S L(T)$, is the set of alternatives in X that are Condorcet winner of a Slater order for T.
idea: approximate the tournament by a linear order.

$$
a \succ b \succ d \succ c \succ e
$$

$$
b \succ c \succ a \succ d \succ e \quad c \succ a \succ b \succ d \succ e \quad d \succ c \succ a \succ e \succ b \quad e \succ a \succ b \succ d \succ c
$$

to make b, c, d a Condorcet winner, it needs " 3 flips" to make e a Condorcet winner, it needs " 4 flips"

Theorem

Computing a Slater ranking is $\mathcal{N} \mathcal{P}$-hard.
Noga Alon. Ranking tournaments. SIAM Journal of Discrete Mathematics, 20(1):137-142, 2006

Vincent Conitzer, Computing Slater Rankings using similarities among candidates, AAAI, 2006

Outline

(1) Introduction: Reasoning about pairwise competition
(2) Desirable properties of solution concepts
(3) Solution based on scoring and Ranking

4 Solutions based on Covering
(5) Solution based on Game Theory

6 Contestation Process
(7) Knockout tournaments
(8) Notes on the size of the choice set

Definition (Covering)

Let $T \in \mathscr{T}(X)$ and $(x, y) \in X^{2}$
x covers y in X iff $[x T y$ and $(\forall z \in X, y T z \Rightarrow x T z)]$
We note $x \triangleright y$

Definition (Equivalent definition of covering)

- $x \triangleright y$ iff $x T y$ and $\forall z \in X, T /_{\{x, y, z\}}$ is transitive.
- $x \triangleright y$ iff $x \neq y$ and $T^{+}(y) \subset T^{+}(x)$
- $x \triangleright y$ iff $x \neq y$ and $T^{-}(x) \subset T^{-}(y)$

Definition (Uncovered Set (UC))

The uncovered set of T is $U C(T)=\{x \in X|\nexists y \in X| y \triangleright x\}$
Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803, 1977

Fishburn. Condorcet social choice functions. SIAM Journal of Applied Mathematics, 33:469-489, 1977

Any outcome x in the Uncovered Set either beats y, or beats some z that beats y (x beats any other outcome it at most two steps).

Proposition

$\forall x \in X \backslash U C(X), U C^{\infty}(X)=U C^{\infty}(X \backslash\{x\})$
Find a covered alternative, remove it, continue...

$T /\{a, b, c\}$
a

covering relation \triangleright

Definition (Covering set)

Let $T \in \mathscr{T}(X)$ and $Y \subset X$.
Y is a Covering set for T iff $\forall x \in X \backslash Y, x \notin U C(Y \cup\{x\})$.
(x is covered by some elements in Y)
$C(T)$ is the family of covering sets for T.

Proposition

$\forall k \in(\mathbb{N} \cup \infty), U C^{k}(T)$ is a covering set for T.

proposition

The family $\mathrm{C}(\mathrm{T})$ admits a minimal element (by inclusion) called the minimal covering set of T and denoted by $M C(T)$.

Dutta B. Covering sets and a new Condorcet choice correspondence. Journal of Economic Theory 44(1):63-80, 1988

$M C \subset U C^{\infty}$ and $M C \neq U C^{\infty}$

$$
\begin{gathered}
U C(T)=X=U C^{\infty}(T) \\
M C(T)=\{1,2,3\}
\end{gathered}
$$

Outline

(1) Introduction: Reasoning about pairwise competition
(2) Desirable properties of solution concepts
(3) Solution based on scoring and Ranking
(1) Solutions based on Covering
(5) Solution based on Game Theory

6 Contestation Process
(7) Knockout tournaments
(8) Notes on the size of the choice set

Definition (tournament game)

A tournament game is a finite symmetric two-player game (X, g) such that, $\forall(x, y) \in X^{2}$

- $g(x, y)+g(y, x)=0$ (zero-sum game)
- $x \neq y \Rightarrow g(x, y) \in\{-1,1\}$
$T \in \mathscr{T}(X) \leftrightarrow$ tournament game (X, g) with $\forall(x, y) \in X^{2}$, xTy iff $g(x, y)=+1$

Propositions

- y is a Condorcet winner $\Rightarrow \forall x \in X, y$ is a best response to x.
- y is not a Condorcet winner $\Rightarrow \forall x \mid x T y, x$ is a best response to y.
- (x, y) is a pure Nash equilibrium iff $\left\{\begin{array}{l}x=y \\ x \text { is a Condorcet winner }\end{array}\right.$
- x dominates y in $(X, g) \Leftrightarrow x$ covers y
- $U C(T)$ is the set of undominated strategies
- $U C^{\infty}(T)$ is the set of strategies not sequentially dominated.

Theorem

A tournament game has a unique Nash equilibrium in mixed strategy, and this equilibrium is symmetric.

Definition (Bipartisan Set)

Let $T \in \mathscr{T}(X)$.
The Bipartisan set $B P(X)$ is the support of the unique mixed equilibrium of the tournament game associated with T.

\upharpoonright	a	b	c	d	e
a	0	1	-1	1	1
b	-1	0	1	1	-1
c	1	-1	0	-1	1
d	-1	-1	1	0	1
e	-1	1	-1	-1	0

Outline

(1) Introduction: Reasoning about pairwise competition
(2) Desirable properties of solution concepts
(3) Solution based on scoring and Ranking
(1) Solutions based on Covering
(5) Solution based on Game Theory
(6) Contestation Process
(7) Knockout tournaments

8 Notes on the size of the choice set

Is y a good outcome?

For a solution tournament \mathscr{S} and $T \in \mathscr{T}(X)$, $\forall(x, y) \in X^{2} x D(\mathscr{S}, T) y \Leftrightarrow x \in S\left(T \mid T^{-}(y)\right)$ x is a contestation of y for T according to \mathscr{S}.

Bank's set

There exists a unique tournament solution B such that

$$
\forall T \in \mathscr{T}(X), o(T) \geq 2 \Rightarrow B(T)=D(B, T)^{-}(X)
$$

$D(B, T)^{-}(X)$ is the set of points in X which are contestation of some point of X according to \mathscr{S}.

Proposition

$x \in B(T)$ iff $\exists Y \subset X$ such that $x \in Y$ and $T \mid Y$ i an ordering for which x is the winner and no point of X beats all the points of Y.

$$
\begin{aligned}
\text { a } Y & =\{d\}, a \succ d \text { and } a T b, d T c, a T e . \\
\text { b } Y & =\{d, c\}, b \succ d \succ c \text { and } c T a, c T e . \\
\text { c } Y & =\{a\}, c \succ a \text { and } a T b, a T d, a T e . \\
\text { d } Y & =\{c, e\}, d \succ c \succ e \text { and } c T a, e T b . \\
\text { e } Y & =\{b\} \text { no because of } a T b \text { and } a T e . \\
Y & =\{b, c\} \text { not an ordering. X } \\
B(T) & =\{a, b, c, d\}
\end{aligned}
$$

Outline

(1) Introduction: Reasoning about pairwise competition
(2) Desirable properties of solution concepts
(3) Solution based on scoring and Ranking
(1) Solutions based on Covering
(5) Solution based on Game Theory
(6) Contestation Process
(7) Knockout tournaments
(8) Notes on the size of the choice set

Definition (Algebraic solution)

A tournament solution \mathscr{S} is computable by a binary tree if, for any order n, there exists a labelled binary tree (N, A, i) of order n such that, for any tournament $T \in \mathscr{T}(X)$ of order $n, \mathscr{S}(T)$ is the set of winners of T along (N, T, i) for all drawing of X. \mathscr{S} is computable by a binary tree iff \mathscr{S} is algebraic.

- Any algebraic tournament solution selects a winner in the top cycle.
- The Copeland and Markov solutions are not algebraic.
- Strengthening a winner can make her lose.
- There exists a non monotonous algebraic tournament solution.

Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803,1977

McKelvey, Niemi. A multistage game representation of sophisticated voting for binary procedures. Journal of Economic Theory 18:1-22,1978

Multistage elimination tree or sophisticated agenda

$\Gamma_{2}(1,2)$

Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803,1977

Hervé Moulin. Dominance Solvable Voting Schemes, Econometrica, 47(6):1337-1352,1979

Sophisticated voting on simple agendas

- $\Gamma_{k}(a)$: outcome of strategic voting on the simple agenda of order k with agenda a
- $a_{-n}=a(1) \cdot a(2) \ldots a(n-2) \cdot a(n-1)$
- $a_{-(n-1)}=a(1) \cdot a(2) \ldots a(n-2) \cdot a(n) \ldots a(n)$

Voting for $a(n)$ or $a(n-1) \Rightarrow$ Comparing $\Gamma_{n-1}\left(a_{-n}\right)$ and $\Gamma_{n-1}\left(a_{-(n-1)}\right)$, i.e.,

$$
\Gamma_{n}(a)=\Gamma_{n-1}\left(a_{-n}\right) \cdot \Gamma_{n-1}\left(a_{-(n-1)}\right)
$$

Sophisticated agenda and sophisticated voting

Strategic voting one a simple agenda results in choosing the winner of the associated sophisticated agenda.

Property

Let \mathcal{B} the set of all permutations of $X=\{1, \ldots, n\}$
Let $a \in \mathcal{B}, w\left(\Gamma_{n}, T, a\right)$ is the winner of the tournament $T \in \mathscr{T}(X)$ along the sophisticated agenda Γ_{n} for the drawing a.

$$
\left\{w\left(\Gamma_{n}, T, a\right), a \in \mathcal{B}\right\}=\operatorname{Bank}(T)
$$

Knockout tournaments

Definition (General Knockout Tournament)

Given a set N of players and a matrix P such that $P_{i j}$ denotes the probability that player i wins against player j in a pairwise elimination match and $\forall(i, j) \in N^{2} 0 \leq P_{i j}=1-P_{j i} \leq 1$, a knockout tournament $K T N=(T, S)$ is defined by:

- A tournament structure T : a binary tree with $|\mathrm{N}|$ leaf nodes
- A seeding S : a bijection between the players in N and the leaf nodes of T

Theorem

It is $\mathcal{N} \mathcal{P}$-complete to decide whether there exists a tournament structure $K T$ with round placement R such that a target player $k \in N$ will win the tournament.

Thuc Vu, Alon Altman, Yoav Shoham, "On the Complexity of Schedule Control Problems for Knockout Tournaments", AAMAS 2009

Outline

(1) Introduction: Reasoning about pairwise competition
(2) Desirable properties of solution concepts
(3) Solution based on scoring and Ranking
(1) Solutions based on Covering
(5) Solution based on Game Theory
(6) Contestation Process
(7) Knockout tournaments
(8) Notes on the size of the choice set

Properties

For Bipartisan set, minimal covering set, iterated uncovered set and the top cycle

- if \exists a Condorcet winner, the winner is unique (definition)
- if \nexists a Condorcet winner, the set of winners contains at least 3 alternatives.

Properties

If all tournaments are equiprobable, the top cycle is almost surely the whole set of alternatives.
Probability that every alternative is in the Banks set in a random tournament goes to one as the number of alternatives goes to infinity. (every alternative is in the Banks set in almost all tournaments).

Mark Fey. Choosing from a large tournament, Social Choice and Welfare, 31(2):301-309

Bibliography

- Jean Francois Laslier Tournament Solution and Majority Voting, Springer 1997.
- Thuc Vu, Alon Altman, Yoav Shoham, "On the Complexity of Schedule Control Problems for Knockout Tournaments", AAMAS 2009.
- F. Brandt, F. Fischer, P. Harrenstein, and M. Mair. " A computational analysis of the tournament equilibrium set". AAAI-2008, COMSOC-2008.

