Introduction to Tournaments

Stéphane Airiau

ILLC

 $\rm COMSOC\ 2009$

Stéphane Airiau (ILLC)

COMSOC 2009 1 / 47

• Voting

Input: Preference of agents over a set of candidates or outcomes Output: one candidate or outcome (or a set)

• Tournament

Input: Binary relation between outcomes or candidates Output: One candidate or outcome (or a set)

> When no ties are allowed between any two alternatives. Either x beats y or y beats x.

> > which are the best outcomes?

- X is a *finite* set of alternatives.
- T is a relation on X, i.e, $T \subset X^2$.
- notation: $(x,y) \in T \Leftrightarrow xTy \Leftrightarrow x \to y \Leftrightarrow x$ "beats" y
- $\mathscr{T}(X)$ is the set of tournaments on X
- $T^+(x) = \{y \in X \mid xTy\}$: successors of x.
- $T^{-}(x) = \{y \in X \mid yTx\}$: predessors of x.
- $s(x) = \#T^+(x)$ is the Copeland score of x.

Definition (Tournament)

The relation T is a **tournament** iff

$$\textcircled{0} \ \forall (x,y) \in X^2 \ x \neq y \Rightarrow [((x,y) \in T) \lor ((y,x) \in T)]$$

$$(x,y) \in X^2 \ (x,y) \in T \Rightarrow (y,x) \notin T .$$

A tournament is a complete and asymmetric binary relation

Majority voting and tournament:

• I finite set of individuals. The preference of an individual i is represented by a complete order P_i defined on X.

• The outcome of majority voting is the binary relation M(P) on X such that $\forall (x, y) \in X$, $xM(P)y \Leftrightarrow \#\{i \in I | xP_iy\} > \#\{i \in I | yP_ix\}$ If initial preferences are strict and number of individual is odd, M(P) is a tournament.

Example (cyclone of order n)

$$Z_n \text{ set of integers modulo } n.$$

$$xC_ny \Leftrightarrow y - x \in \left\{1, \dots, \frac{n-1}{2}\right\}$$

$$T^+(1) = \{2, 3, 4\}$$

$$T^-(1) = \{5, 6, 7\}$$

Definition (isomorphism)

Let X and Y be two sets, $T \in \mathscr{T}(X)$, $U \in \mathscr{T}(Y)$ two tournaments on X and Y.

A mapping ϕ : $X \to Y$ is a tournament isomorphism iff

- ϕ is a bijection
- $\forall (x,y) \in X^2, xTx' \Leftrightarrow \phi(x)U\phi(x')$

On a set X of cardinal n, there are $2^{\frac{n \cdot (n-1)}{2}}$ tournaments, but many of them are isomorphic.

n	$2^{rac{n(n-1)}{2}}$	number of
		non-isomorphic tournaments
8	$268,\!435,\!456$	6,880
10	$35,\!184,\!372,\!088,\!832$	9,733,056

Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- **5** Solution based on Game Theory
- 6 Contestation Process
 - 7 Knockout tournaments
- 8 Notes on the size of the choice set

Definition (Condorcet winners)

Let $T \in \mathscr{T}(X)$. The set of Condorcet winners of T is

$$\mathscr{C}ondorcet(T) = \{ x \in X \mid \forall y \in X, \, y \neq x \Rightarrow xTy \}$$

Property

Either $\mathscr{C}ondorcet(T) = \emptyset$ or $\mathscr{C}ondorcet(T)$ is a singleton.

Definition (Tournament solution)

A tournament solution \mathscr{S} associates to any tournament $\mathscr{T}(X)$ a subset $\mathscr{S}(T) \subset X$ and satisfies

•
$$\forall T \in \mathscr{T}(X), \, \mathscr{S}(T) \neq \emptyset$$

- For any tournament isomorphism ϕ , $\phi o \mathscr{S} = \mathscr{S} o \phi$ (anonymity)
- $\forall T \in \mathscr{T}(X), \mathscr{C}ondorcet(T) \neq \emptyset \Rightarrow \mathscr{S}(T) = \mathscr{C}ondorcet(T)$

For $\mathscr{S}, \mathscr{S}_1, \mathscr{S}_2$ tournament solutions.

•
$$\mathscr{S}_1 o \mathscr{S}_2(T) = \mathscr{S}_1(T/\mathscr{S}_2(T)) = \mathscr{S}_1(\mathscr{S}_2(T))$$

- $\bullet \ \mathscr{S}^1 = \mathscr{S}, \ \mathscr{S}^{k+1} = \mathscr{S}o\mathscr{S}^k, \ \mathscr{S}^\infty = \lim_{k \to \infty} \mathscr{S}^k$
- solutions may be finer/more selective:

 $\mathscr{S}_1 \subset \mathscr{S}_2 \Leftrightarrow \forall T \in \mathscr{T}(X) \ \mathscr{S}_1(T) \subset \mathscr{S}_2(T) \text{ than } \mathscr{S}_2.$

• solutions may be different:

$$\mathscr{S}_1 \varnothing \mathscr{S}_2 \Leftrightarrow \exists T \in \mathscr{T} \,|\, \mathscr{S}_1(T) \cap \mathscr{S}_2(T) = \emptyset$$

• solution may have common elements:

 $\mathscr{S}_1 \cap \mathscr{S}_2 \Leftrightarrow \forall T \in \mathscr{T} \,|\, \mathscr{S}_1(T) \cap \mathscr{S}_2(T) \neq \emptyset$

Definition (Top Cycle)

The top cycle of $T \in \mathscr{T}(X)$ is the set TC defined as

$$TC(T) = \left\{ x \in X \mid \forall y \in X, \exists k > 0 \middle| \begin{array}{l} \exists (z_1, \dots, z_k) \in X^k, \\ z_1 = x, z_k = y, \\ \text{and} \\ 1 \le i < j \le k \Rightarrow z_i T z_j \end{array} \right\}$$

The top cycle contains outcomes that beat directly or indirectly every other outcomes.

- Regular
- Monotonous
- Independent of the losers
- Strong Superset Property
- Idempotent
- Aïzerman property
- Composition-consistent and weak composition-consistent

Definition (Regular tournament)

A tournament is regular iff all the points have the same Copeland score.

Definition (Monotonous)

A solution \mathscr{S} is monotonous iff $\forall T \in \mathscr{T}(X), \forall x \in \mathscr{S}(T), \forall T' \in \mathscr{T}(X)$ such that $\begin{cases} T'/X \setminus \{x\} = T/X \setminus \{x\} \\ \forall y \in X, xTY \Rightarrow xT'y \end{cases}$ one has $x \in \mathscr{S}(T')$

"Whenever a winner is reinforced, it does not become a loser."

Definition (Independence of the losers)

A solution \mathscr{S} is independent of the losers iff $\forall T \in \mathscr{T}(X), \forall T' \in \mathscr{T}(X)$ such that $\forall x \in \mathscr{S}(T), \forall y \in X, xTy \Leftrightarrow xT'y$ one has $\mathscr{S}(T) = \mathscr{S}(T')$.

"the only important relations are "What happens between losers do not matter."

Definition (Strong Superset Property (SSP))

A solution \mathscr{S} satisfies the Strong Superset Property (SSP) iff $\forall T \in \mathscr{T}(X), \forall Y \mid \mathscr{S}(T) \subset Y \subset X$ one has $\mathscr{S}(T) = \mathscr{S}(T/Y)$

"We can delete some or all losers, and the set of winners does not change"

Definition (Idempotent)

A solution \mathscr{S} is idempotent iff $\mathscr{S}o\mathscr{S} = \mathscr{S}$.

X

$$\mathscr{S}(T)$$

Definition (Aïzerman property)

A solution \mathscr{S} satisfies the Aïzerman property iff $\forall T \in \mathscr{T}(X), \forall Y \subset X$ $\mathscr{S}(T) \subset Y \subset X \Rightarrow \mathscr{S}(T/Y) \subset \mathscr{S}(T)$

$$X$$
 Y $\mathscr{S}(T)$

Solution Concepts

•	Copeland solution (C)	
•	the Long Path (LP)	method for repling
•	Markov solution (MA)	method for ranking
•	Slater solution (SL)	
•	Uncovered set (UC)	
•	Iterations of the Uncovered set (UC^{∞})	covering
•	Dutta's minimal covering set (MC)	covering
•	Bipartisan set (BP)	Game theory based
•	Bank's solution (B)	Paged on Contestation
•	Tournament equilibrium set (TEQ)	Based on Contestation

	TC	UC	UC^{∞}	MC	BP	В	TEQ	SL	С
Monotonicity	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark
Independence of the losers	\checkmark	×	×	\checkmark	\checkmark	×	?	×	×
Idempotency	\checkmark	×	\checkmark	\checkmark	\checkmark	×	?	×	×
Aïzerman property	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	?	×	×
Strong superset property	\checkmark	×	X	\checkmark	\checkmark	×	?	×	×
Composition-consistency	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×
Weak Compconsist.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×
Regularity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	×
Copeland value	1	1	1/2	1/2	1/2	$\leq 1/3$	$\leq 1/3$	1/2	1
Complexity	$O(n^2)$	$O(n^{2.38})$	\mathcal{P}			$\mathcal{NP} ext{-hard}$	$\mathcal{NP} ext{-hard}$	$\mathcal{NP} ext{-hard}$	$O(n^2)$

	TC	UC	UC^{∞}	MC	BP	В	TEQ	C
UC	C							
UC∞	C	C						
MC	C	С	\cup					
BP	C	С	\cup	C				
В	C	С	\cap	\cap	a			
TEQ	С	С	\cup	b	a	C		
С	C	С	Ø	Ø	Ø	Ø	Ø	
SL	C	С	Ø	Ø	Ø	Ø	Ø	Ø

- $\begin{array}{l} \mathbf{a} \quad \exists T \in \mathscr{T}_{29} \mid B(T) \subset BP(T) \text{ and } B(T) \neq BP(T) \\ \exists T' \in \mathscr{T}_{6} \mid BP(T') \subset B(T') \text{ and } B(T') \neq BP(T'). \\ \text{It is unknown if } B \cap BP \text{ can be empty.} \\ \text{Same for TEQ and BP.} \end{array}$
- b TEQ \subset MC is a conjecture

Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- **(3)** Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
- 7 Knockout tournaments
- Notes on the size of the choice set

Recall: Copeland score $s(x) = |T^+(x)| = |\{y \in X \mid xTy\}|$ s(x) is the number of alternatives that x beats.

Definition (Copeland solution (C))

Copeland winners of $T \in \mathscr{T}(X)$ is $C(T) = \{x \in X \mid \forall y \in X, s(y) = s(x)\}$

Definition (Slater, Kandall, or Hamming distance)

Let
$$(T,T') \in \mathscr{T}(X)$$

 $\Delta(T,T') = \frac{1}{2} \# \{(x,y) \in X^2 \mid xTy \land yT'x\}$

How many arrows are flipped in the tournament graph?

Definition (Slater order)

Let $T \in \mathscr{T}(X)$.

A Slater order for T is a linear order $U \in \mathscr{L}(X)$ such that

$$\Delta(T, U) = \min_{V \in \mathscr{L}(X)} \left\{ \Delta(T, V) \right\}$$

where $\mathscr{L}(X)$ is the set of linear order over X. The set of Slater winners of T, noted SL(T), is the set of alternatives in X that are Condorcet winner of a Slater order for T.

idea: approximate the tournament by a linear order.

Stéphane Airiau (ILLC)

to make b, c, d a Condorcet winner, it needs "3 flips" to make e a Condorcet winner, it needs "4 flips"

Theorem

Computing a Slater ranking is \mathcal{NP} -hard.

Noga Alon. Ranking tournaments. SIAM Journal of Discrete Mathematics, 20(1):137-142, 2006

Vincent Conitzer, Computing Slater Rankings using similarities among candidates, AAAI, 2006

Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
- 7 Knockout tournaments
- Notes on the size of the choice set

Definition (Covering)

Let $T \in \mathscr{T}(X)$ and $(x, y) \in X^2$ x covers y in X iff $[xTy \text{ and } (\forall z \in X, yTz \Rightarrow xTz)]$ We note $x \triangleright y$

Definition (Equivalent definition of covering)

Definition (Uncovered Set (UC))

The uncovered set of T is $UC(T) = \{x \in X \mid \nexists y \in X \mid y \triangleright x\}$

Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803, 1977

Fishburn. Condorcet social choice functions. SIAM Journal of Applied Mathematics, 33:469–489, 1977

Any outcome x in the Uncovered Set either beats y, or beats some z that beats y (x beats any other outcome it at most two steps).

Proposition

$\forall x \in X \setminus UC(X), \, UC^{\infty}(X) = UC^{\infty}(X \setminus \{x\})$

Find a covered alternative, remove it, continue...

Definition (Covering set)

Let $T \in \mathscr{T}(X)$ and $Y \subset X$. Y is a Covering set for T iff $\forall x \in X \setminus Y, x \notin UC(Y \cup \{x\})$. (x is covered by some elements in Y)C(T) is the family of covering sets for T.

Proposition

 $\forall k \in (\mathbb{N} \cup \infty), UC^k(T) \text{ is a covering set for } T.$

proposition

The family C(T) admits a minimal element (by inclusion) called the minimal covering set of T and denoted by MC(T).

Dutta B. Covering sets and a new Condorcet choice correspondence. Journal of Economic Theory 44(1):63-80, 1988

$MC \subset UC^\infty$ and $MC \neq UC^\infty$

$$UC(T) = X = UC^{\infty}(T)$$
$$MC(T) = \{1, 2, 3\}$$

Stéphane Airiau (ILLC)

COMSOC 2009 29 / 47

Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- ³ Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
 - 6 Contestation Process
- 7 Knockout tournaments
- 8 Notes on the size of the choice set

Definition (tournament game)

A tournament game is a finite symmetric two-player game (X,g) such that, $\forall (x,y) \in X^2$

• g(x,y) + g(y,x) = 0 (zero-sum game)

•
$$x \neq y \Rightarrow g(x,y) \in \{-1,1\}$$

 $T \in \mathscr{T}(X) \leftrightarrow \text{ tournament game } (X,g)$ with $\forall (x,y) \in X^2$, xTy iff g(x,y) = +1

Propositions

- y is a Condorcet winner $\Rightarrow \forall x \in X, y$ is a best response to x.
- y is not a Condorcet winner $\Rightarrow \forall x \mid xTy, x \text{ is a best response to } y$.

•
$$(x, y)$$
 is a pure Nash equilibrium iff $\begin{cases} x = y \\ x \text{ is a Condorcet winner} \end{cases}$

- x dominates y in $(X, g) \Leftrightarrow x$ covers y
 - UC(T) is the set of undominated strategies
 - $UC^{\infty}(T)$ is the set of strategies not sequentially dominated.

Theorem

A tournament game has a unique Nash equilibrium in mixed strategy, and this equilibrium is symmetric.

Definition (Bipartisan Set)

Let $T \in \mathscr{T}(X)$. The Bipartisan set BP(X) is the support of the unique mixed equilibrium of the tournament game associated with T.

Þ	a	b	c	d	e
a	0	1	-1	1	1
b	-1	0	1	1	-1
c	1	-1	0	-1	1
d	-1	-1	1	0	1
e	-1	1	-1	-1	0

Stéphane Airiau (ILLC)

Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory

6 Contestation Process

- 7 Knockout tournaments
- Notes on the size of the choice set

Is y a good outcome?

For a solution tournament \mathscr{S} and $T \in \mathscr{T}(X)$, $\forall (x, y) \in X^2 \ xD(\mathscr{S}, T)y \Leftrightarrow x \in S(T | T^-(y))$ x is a contestation of y for T according to \mathscr{S} .

Bank's set

There exists a unique tournament solution B such that

 $\forall T\in \mathscr{T}(X),\, o(T)\geq 2 \Rightarrow B(T)=D(B,T)^-(X)$

 $D(B,T)^{-}(X)$ is the set of points in X which are contestation of some point of X according to \mathscr{S} .

Proposition

 $x \in B(T)$ iff $\exists Y \subset X$ such that $x \in Y$ and T|Y i an ordering for which x is the winner and no point of X beats all the points of Y.

a
$$Y = \{d\}, a \succ d$$
 and $aTb, dTc, aTe.$
b $Y = \{d, c\}, b \succ d \succ c$ and $cTa, cTe.$
c $Y = \{a\}, c \succ a$ and $aTb, aTd, aTe.$
d $Y = \{c, e\}, d \succ c \succ e$ and $cTa, eTb.$
e $Y = \{b\}$ no because of aTb and $aTe.$
 $Y = \{b, c\}$ not an ordering.
 $B(T) = \{a, b, c, d\}$

Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
 - 7 Knockout tournaments
 - Notes on the size of the choice set

Definition (Algebraic solution)

A tournament solution \mathscr{S} is computable by a binary tree if, for any order n, there exists a labelled binary tree (N, A, i) of order n such that, for any tournament $T \in \mathscr{T}(X)$ of order n, $\mathscr{S}(T)$ is the set of winners of T along (N, T, i) for all drawing of X. \mathscr{S} is computable by a binary tree iff \mathscr{S} is algebraic.

- Any algebraic tournament solution selects a winner in the top cycle.
- The Copeland and Markov solutions are not algebraic.
- Strengthening a winner can make her lose.
- There exists a non monotonous algebraic tournament solution.

Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803,1977

McKelvey, Niemi. A multistage game representation of sophisticated voting for binary procedures. *Journal of Economic Theory* 18:1-22,1978

Multistage elimination tree or sophisticated agenda

Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803,1977

Hervé Moulin. Dominance Solvable Voting Schemes, *Econometrica*, 47(6):1337-1352,1979

Stéphane Airiau (ILLC)

Sophisticated voting on simple agendas

• $\Gamma_k(a)$: outcome of *strategic* voting on the simple agenda of order k with agenda a

•
$$a_{-n} = a(1) \cdot a(2) \dots a(n-2) \cdot a(n-1)$$

•
$$a_{-(n-1)} = a(1) \cdot a(2) \dots a(n-2) \cdot a(n) \dots a(n)$$

Voting for a(n) or $a(n-1) \Rightarrow$ Comparing $\Gamma_{n-1}(a_{-n})$ and $\Gamma_{n-1}(a_{-(n-1)})$, i.e., $\Gamma_n(a) = \Gamma_{n-1}(a_{-n}) \cdot \Gamma_{n-1}(a_{-(n-1)})$

Sophisticated agenda and sophisticated voting

Strategic voting one a simple agenda results in choosing the winner of the associated sophisticated agenda.

Stéphane Airiau (ILLC)

Property

Let \mathcal{B} the set of all permutations of $X = \{1, \ldots, n\}$ Let $a \in \mathcal{B}$, $w(\Gamma_n, T, a)$ is the winner of the tournament $T \in \mathscr{T}(X)$ along the sophisticated agenda Γ_n for the drawing a.

$$\{w(\Gamma_n, T, a), a \in \mathcal{B}\} = Bank(T)$$

Definition (General Knockout Tournament)

Given a set N of players and a matrix P such that P_{ij} denotes the probability that player i wins against player j in a pairwise elimination match and $\forall (i, j) \in N^2 \ 0 \leq P_{ij} = 1 - P_{ji} \leq 1$, a knockout tournament KTN = (T, S) is defined by:

- A tournament structure T: a binary tree with $|\mathbf{N}|$ leaf nodes
- A seeding S: a bijection between the players in N and the leaf nodes of T

Theorem

It is \mathcal{NP} -complete to decide whether there exists a tournament structure KT with round placement R such that a target player $k \in N$ will win the tournament.

Thuc Vu, Alon Altman, Yoav Shoham, "On the Complexity of Schedule Control Problems for Knockout Tournaments", AAMAS 2009

Stéphane Airiau (ILLC)

Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
- 7 Knockout tournaments
- 8 Notes on the size of the choice set

Properties

For Bipartisan set, minimal covering set, iterated uncovered set and the top cycle

- if \exists a Condorcet winner, the winner is unique (definition)
- if \nexists a Condorcet winner, the set of winners contains at least 3 alternatives.

Properties

If all tournaments are equiprobable, the top cycle is almost surely the whole set of alternatives.

Probability that every alternative is in the Banks set in a random tournament goes to one as the number of alternatives goes to infinity. (*every* alternative is in the Banks set in *almost all* tournaments).

Mark Fey. Choosing from a large tournament, Social Choice and Welfare, 31(2):301–309

- Jean Francois Laslier *Tournament Solution and Majority Voting*, Springer 1997.
- Thuc Vu, Alon Altman, Yoav Shoham, "On the Complexity of Schedule Control Problems for Knockout Tournaments", AAMAS 2009.
- F. Brandt, F. Fischer, P. Harrenstein, and M. Mair. "A computational analysis of the tournament equilibrium set". AAAI-2008, COMSOC-2008.