#### Introduction to Tournaments

Stéphane Airiau

ILLC

COMSOC 2009

Stéphane Airiau (ILLC

COMSOC 2009 1 /

#### Notations

- $\bullet$  X is a *finite* set of alternatives.
- T is a relation on X, i.e,  $T \subset X^2$ .
- notation:  $(x,y) \in T \Leftrightarrow xTy \Leftrightarrow x \to y \Leftrightarrow x$  "beats" y
- $\mathcal{I}(X)$  is the set of tournaments on X
- $T^+(x) = \{y \in X \mid xTy\}$ : successors of x.
- $T^-(x) = \{y \in X \mid yTx\}$ : predessors of x.
- $s(x) = \#T^+(x)$  is the Copeland score of x.

#### Voting

Input: Preference of agents over a set of candidates or outcomes

Output: one candidate or outcome (or a set)

#### Tournament

Input: Binary relation between outcomes or candidates

Output: One candidate or outcome (or a set)

When no ties are allowed between any two alternatives. Either x beats y or y beats x.

which are the best outcomes?

Stéphane Airiau (ILLC)

COMSOC 2009 2 / 4

#### Definition (Tournament)

The relation T is a tournament iff

- $\forall (x,y) \in X^2 \ x \neq y \Rightarrow [((x,y) \in T) \lor ((y,x) \in T)]$
- $(x,y) \in X^2 \ (x,y) \in T \Rightarrow (y,x) \notin T .$

A tournament is a complete and asymmetric binary relation

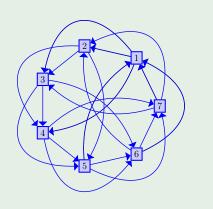
#### Majority voting and tournament:

- I finite set of individuals. The preference of an individual i is represented by a complete order  $P_i$  defined on X.
- The outcome of majority voting is the binary relation M(P) on X such that  $\forall (x,y) \in X$ ,  $xM(P)y \Leftrightarrow \#\{i \in I|xP_iy\} > \#\{i \in I|yP_ix\}$  If initial preferences are strict and number of individual is odd, M(P) is a tournament.

Stéphane Airiau (ILLC) COMSOC 2009 3 / 47 Stéphane Airiau (ILLC) COMSOC 2009 4 / 4

#### Example (cyclone of order n)

$$Z_n$$
 set of integers modulo  $n$ .  
 $xC_ny \Leftrightarrow y-x \in \{1,\ldots,\frac{n-1}{2}\}$   
 $T^+(1) = \{2,3,4\}$   
 $T^-(1) = \{5,6,7\}$ 



Stéphane Airiau (ILLC

COMSOC 2009

5 / 47

# Definition (isomorphism)

Let X and Y be two sets,  $T \in \mathcal{T}(X)$ ,  $U \in \mathcal{T}(Y)$  two tournaments on X and Y.

A mapping  $\phi: X \to Y$  is a tournament isomorphism iff

- $\phi$  is a bijection
- $\forall (x,y) \in X^2$ ,  $xTx' \Leftrightarrow \phi(x)U\phi(x')$

On a set X of cardinal n, there are  $2^{\frac{n \cdot (n-1)}{2}}$  tournaments, but many of them are isomorphic.

| n  | $2^{\frac{n(n-1)}{2}}$ | number of                  |  |  |  |
|----|------------------------|----------------------------|--|--|--|
|    | Δ 2                    | non-isomorphic tournaments |  |  |  |
| 8  | 268,435,456            | 6,880                      |  |  |  |
| 10 | 35,184,372,088,832     | 9,733,056                  |  |  |  |

Stéphane Airiau (ILLC)

COMSOC 2009

#### Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
- 7 Knockout tournaments
- 8 Notes on the size of the choice set

# Condorcet principle

#### Definition (Condorcet winners)

Let  $T \in \mathcal{T}(X)$ . The set of Condorcet winners of T is

$$\mathscr{C}ondorcet(T) = \{ x \in X \mid \forall y \in X, \ y \neq x \Rightarrow xTy \}$$

# Property

Either  $\mathscr{C}ondorcet(T) = \emptyset$  or  $\mathscr{C}ondorcet(T)$  is a singleton.

Stéphane Airiau (ILLC) COMSOC 2009 7 / 47 Stéphane Airiau (ILLC) COMSOC 2009 8 / 47

#### Definition (Tournament solution)

A tournament solution  ${\mathscr S}$  associates to any tournament  ${\mathscr T}(X)$  a subset  ${\mathscr S}(T)\subset X$  and satisfies

- $\forall T \in \mathcal{T}(X), \mathcal{S}(T) \neq \emptyset$
- For any tournament isomorphism  $\phi$ ,  $\phi \circ \mathscr{S} = \mathscr{S} \circ \phi$  (anonymity)
- $\bullet \ \forall T \in \mathscr{T}(X), \mathscr{C}ondorcet(T) \neq \emptyset \Rightarrow \mathscr{S}(T) = \mathscr{C}ondorcet(T)$

For  $\mathscr{S}$ ,  $\mathscr{S}_1$ ,  $\mathscr{S}_2$  tournament solutions.

- $\bullet \ \mathscr{S}_1 o \mathscr{S}_2(T) = \mathscr{S}_1(T/\mathscr{S}_2(T)) = \mathscr{S}_1(\mathscr{S}_2(T))$
- $\bullet \ \mathcal{S}^1 = \mathcal{S}, \ \mathcal{S}^{k+1} = \mathcal{S}o\mathcal{S}^k, \ \mathcal{S}^\infty = \lim_{k \to \infty} \mathcal{S}^k$
- solutions may be finer/more selective:

$$\mathscr{S}_1 \subset \mathscr{S}_2 \Leftrightarrow \forall T \in \mathscr{T}(X) \mathscr{S}_1(T) \subset \mathscr{S}_2(T) \text{ than } \mathscr{S}_2.$$

• solutions may be different:

$$\mathscr{S}_1 \varnothing \mathscr{S}_2 \Leftrightarrow \exists T \in \mathscr{T} \mid \mathscr{S}_1(T) \cap \mathscr{S}_2(T) = \emptyset$$

• solution may have common elements:

$$\mathscr{S}_1\cap\mathscr{S}_2 \Leftrightarrow \forall T\in\mathscr{T} \,|\, \mathscr{S}_1(T)\cap\mathscr{S}_2(T)\neq\emptyset$$

Stéphane Airiau (ILLC)

COMSOC 2009 9 / 47

# Properties of Solutions

- Regular
- Monotonous
- Independent of the losers
- Strong Superset Property
- Idempotent
- Aïzerman property
- Composition-consistent and weak composition-consistent

# A first solution: the Top Cycle (TC)

### Definition (Top Cycle)

The top cycle of  $T \in \mathcal{T}(X)$  is the set TC defined as

$$TC(T) = \left\{ x \in X \mid \forall y \in X, \ \exists k > 0 \middle| \begin{array}{l} \exists (z_1, \dots, z_k) \in X^k, \\ z_1 = x, \ z_k = y, \\ \text{and} \\ 1 \le i < j \le k \Rightarrow z_i T z_j \end{array} \right\}$$

The top cycle contains outcomes that beat directly or indirectly every other outcomes.



éphane Airiau (ILLC)

COMSOC 2009

#### Definition (Regular tournament)

A tournament is regular iff all the points have the same Copeland score.

# Definition (Monotonous)

A solution  $\mathscr{S}$  is monotonous iff  $\forall T \in \mathscr{T}(X), \ \forall x \in \mathscr{S}(T), \ \forall T' \in \mathscr{T}(X)$  such that  $\left\{ \begin{array}{l} T'/X \setminus \{x\} = T/X \setminus \{x\} \\ \forall y \in X, \ xTY \Rightarrow xT'y \end{array} \right.$  one has  $x \in \mathscr{S}(T')$ 

"Whenever a winner is reinforced, it does not become a loser."

Stéphane Airiau (ILLC) COMSOC 2009 11 / 47 Stéphane Airiau (ILLC) COMSOC 2009 12 / 47

#### Definition (Independence of the losers)

A solution  $\mathscr{S}$  is independent of the losers iff  $\forall T \in \mathscr{T}(X), \forall T' \in \mathscr{T}(X)$ such that  $\forall x \in \mathcal{S}(T), \forall y \in X, xTy \Leftrightarrow xT'y$ one has  $\mathcal{S}(T) = \mathcal{S}(T')$ .

"the only important relations are  $\left\{ \begin{array}{l} \text{winners to winners} \\ \text{winners to losers} \end{array} \right.$ "What happens between losers do not matter."

# Definition (Strong Superset Property (SSP))

A solution  $\mathcal S$  satisfies the Strong Superset Property (SSP) iff  $\forall T \in \mathcal{T}(X), \, \forall Y \mid \mathcal{S}(T) \subset Y \subset X$ one has  $\mathcal{S}(T) = \mathcal{S}(T/Y)$ 

"We can delete some or all losers, and the set of winners does not change"

Stéphane Airiau (ILLC)

COMSOC 2009

#### Definition (Idempotent)

A solution  $\mathcal{S}$  is idempotent iff  $\mathcal{S} \circ \mathcal{S} = \mathcal{S}$ .

 $\mathcal{S}(T)$ 

#### Definition (Aïzerman property)

A solution  $\mathscr{S}$  satisfies the Aïzerman property iff  $\forall T \in \mathscr{T}(X), \forall Y \subset X$  $\mathscr{S}(T) \subset Y \subset X \Rightarrow \mathscr{S}(T/Y) \subset \mathscr{S}(T)$ 

COMSOC 2009

#### Solution Concepts

- Copeland solution (C)
- the Long Path (LP)
- Markov solution (MA)
- Slater solution (SL)
- Uncovered set (UC)
- Iterations of the Uncovered set  $(UC^{\infty})$ covering
- Dutta's minimal covering set (MC)
- Bipartisan set (BP)
- Bank's solution (B)
- Tournament equilibrium set (TEQ)

based on the notion of

method for ranking

Game theory based

Based on Contestation

|                            | TC       | UC            | $UC^{\infty}$ | MC  | BP       | В                    | TEQ                  | SL                   | С        |
|----------------------------|----------|---------------|---------------|-----|----------|----------------------|----------------------|----------------------|----------|
| Monotonicity               | <b></b>  |               | X             |     | <b>V</b> |                      | ?                    | <b></b>              |          |
| Independence of the losers |          | ×             | ×             |     |          | ×                    | ?                    | ×                    | X        |
| Idempotency                | <b></b>  | ×             | <b></b>       |     |          | ×                    | ?                    | ×                    | ×        |
| Aïzerman property          | V        | <b></b>       | X             | V   | <b>V</b> | <b></b>              | ?                    | ×                    | ×        |
| Strong superset property   | <b></b>  | ×             | ×             |     | V        | ×                    | ?                    | ×                    | ×        |
| Composition-consistency    | ×        | <b></b>       | <b>V</b>      |     | <b>V</b> | <b></b>              | <b>\</b>             | ×                    | ×        |
| Weak Compconsist.          | V        | <b></b>       | <b>V</b>      |     | <b>V</b> | <b></b>              |                      | <b></b>              | ×        |
| Regularity                 | V        | <b></b>       | <b>V</b>      |     | <b>V</b> | X                    | ×                    | <b></b>              | ×        |
| Copeland value             | 1        | 1             | 1/2           | 1/2 | 1/2      | $\leq 1/3$           | $\leq 1/3$           | 1/2                  | 1        |
| Complexity                 | $O(n^2)$ | $O(n^{2.38})$ | $\mathcal{P}$ |     |          | $\mathcal{NP}$ -hard | $\mathcal{NP}$ -hard | $\mathcal{NP}$ -hard | $O(n^2)$ |

COMSOC 2009 COMSOC 2009 Stéphane Airiau (ILLC) Stéphane Airiau (ILLC)

|     | ТС        | UC        | UC∞       | MC        | BP | В         | TEQ | С |
|-----|-----------|-----------|-----------|-----------|----|-----------|-----|---|
| UC  | $\subset$ |           |           |           |    |           |     |   |
| UC∞ | $\subset$ | $\subset$ |           |           |    |           |     |   |
| MC  | $\subset$ | $\subset$ | $\subset$ |           |    |           |     |   |
| BP  | $\subset$ | $\subset$ | $\subset$ | $\subset$ |    |           |     |   |
| В   | $\subset$ | $\subset$ | Λ         | $\cap$    | a  |           |     |   |
| TEQ | $\subset$ | $\subset$ | $\subset$ | b         | a  | $\subset$ |     |   |
| С   | $\subset$ | $\subset$ | Ø         | Ø         | Ø  | Ø         | Ø   |   |
| SL  | $\subset$ | <u> </u>  | Ø         | Ø         | Ø  | Ø         | Ø   | Ø |

- a  $\exists T \in \mathscr{T}_{29} \mid B(T) \subset BP(T)$  and  $B(T) \neq BP(T)$  $\exists T' \in \mathscr{T}_{6} \mid BP(T') \subset B(T')$  and  $B(T') \neq BP(T')$ . It is unknown if  $B \cap BP$  can be empty. Same for TEQ and BP.
- b TEQ  $\subset$  MC is a conjecture

Stéphane Airiau (ILLC)

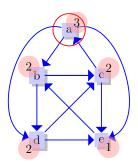
COMSOC 2009

17

Recall: Copeland score  $s(x) = |T^+(x)| = |\{y \in X \mid xTy\}|$ s(x) is the number of alternatives that x beats.

#### Definition (Copeland solution (C))

Copeland winners of  $T \in \mathcal{T}(X)$  is  $C(T) = \{x \in X \mid \forall y \in X, s(y) = s(x)\}$ 



#### Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
- 7 Knockout tournaments
- 8 Notes on the size of the choice set

Stéphane Airiau (ILLC)

COMSOC 2009

#### Definition (Slater, Kandall, or Hamming distance)

Let  $(T, T') \in \mathscr{T}(X)$ 

$$\Delta(T, T') = \frac{1}{2} \# \{ (x, y) \in X^2 | xTy \wedge yT'x \}$$

How many arrows are flipped in the tournament graph?

#### Definition (Slater order)

Let  $T \in \mathcal{T}(X)$ .

A Slater order for T is a linear order  $U \in \mathcal{L}(X)$  such that

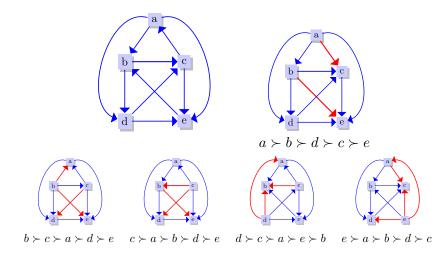
$$\Delta(T, U) = \min_{V \in \mathcal{L}(X)} \{ \Delta(T, V) \}$$

where  $\mathcal{L}(X)$  is the set of linear order over X.

The set of Slater winners of T, noted SL(T), is the set of alternatives in X that are Condorcet winner of a Slater order for T.

idea: approximate the tournament by a linear order.

Stéphane Airiau (ILLC) COMSOC 2009 19 / 47 Stéphane Airiau (ILLC) COMSOC 2009 20 / 47



to make b, c, d a Condorcet winner, it needs "3 flips" to make e a Condorcet winner, it needs "4 flips"

Stéphane Airiau (ILLC)

COMSOC 2009

# Outline

- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- Solutions based on Covering
- 5 Solution based on Game Theory

#### Theorem

Computing a Slater ranking is  $\mathcal{NP}$ -hard.

Noga Alon. Ranking tournaments. SIAM Journal of Discrete Mathematics, 20(1):137-142, 2006

Vincent Conitzer, Computing Slater Rankings using similarities among candidates, AAAI, 2006

COMSOC 2009

22 / 47

Stéphane Airiau (ILLC)

# Definition (Covering)

Let  $T \in \mathcal{T}(X)$  and  $(x, y) \in X^2$  $x \text{ covers } y \text{ in } X \text{ iff } [xTy \text{ and } (\forall z \in X, yTz \Rightarrow xTz)]$ We note  $x \triangleright y$ 

# Definition (Equivalent definition of covering)

- $x \triangleright y$  iff xTy and  $\forall z \in X, T/_{\{x,y,z\}}$  is transitive.
- $x \triangleright y$  iff  $x \neq y$  and  $T^+(y) \subset T^+(x)$
- $x \triangleright y$  iff  $x \neq y$  and  $T^-(x) \subset T^-(y)$

COMSOC 2009 COMSOC 2009 24 / 47 Stéphane Airiau (ILLC) Stéphane Airiau (ILLC)

#### Definition (Uncovered Set (UC))

The uncovered set of T is  $UC(T) = \{x \in X \mid \nexists y \in X \mid y \triangleright x\}$ 

Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803, 1977

Fishburn. Condorcet social choice functions. SIAM Journal of Applied Mathematics, 33:469–489, 1977

Any outcome x in the Uncovered Set either beats y, or beats some zthat beats y (x beats any other outcome it at most two steps).

b c covering relation  $\triangleright$ tournament

 $UC(T) = \{a, b, c, d\}$ 

Stéphane Airiau (ILLC)

COMSOC 2009

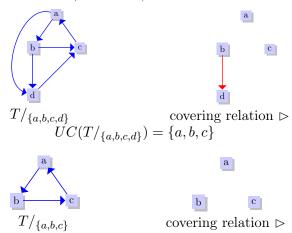
Stéphane Airiau (ILLC)

COMSOC 2009

#### Proposition

 $\forall x \in X \setminus UC(X), \ UC^{\infty}(X) = UC^{\infty}(X \setminus \{x\})$ 

Find a covered alternative, remove it, continue...



#### Definition (Covering set)

Let  $T \in \mathcal{T}(X)$  and  $Y \subset X$ .

Y is a Covering set for T iff  $\forall x \in X \setminus Y$ ,  $x \notin UC(Y \cup \{x\})$ .

(x is covered by some elements in Y)

C(T) is the family of covering sets for T.

#### Proposition

 $\forall k \in (\mathbb{N} \cup \infty), UC^k(T)$  is a covering set for T.

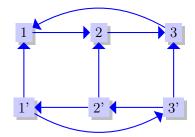
#### proposition

The family C(T) admits a minimal element (by inclusion) called the minimal covering set of T and denoted by MC(T).

Dutta B. Covering sets and a new Condorcet choice correspondence. Journal of Economic Theory 44(1):63-80, 1988

COMSOC 2009 COMSOC 2009 27 / 47 Stéphane Airiau (ILLC Stéphane Airiau (ILLC)

 $MC \subset UC^{\infty}$  and  $MC \neq UC^{\infty}$ 



$$UC(T) = X = UC^{\infty}(T)$$
$$MC(T) = \{1, 2, 3\}$$

Stéphane Airiau (ILLC)

COMSOC 2009

29 / 4

Stéphane Airiau (ILLC)

#### Outline

- Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- **5** Solution based on Game Theory
- 6 Contestation Process
- 7 Knockout tournaments
- 8 Notes on the size of the choice set

COMSOC 2009 30 / 47

#### Definition (tournament game)

A tournament game is a finite symmetric two-player game (X,g) such that,  $\forall (x,y) \in X^2$ 

- g(x,y) + g(y,x) = 0 (zero-sum game)
- $x \neq y \Rightarrow g(x,y) \in \{-1,1\}$

 $T \in \mathcal{T}(X) \leftrightarrow \text{tournament game } (X, g)$ with  $\forall (x, y) \in X^2$ , xTy iff g(x, y) = +1

#### Propositions

- y is a Condorcet winner  $\Rightarrow \forall x \in X, y$  is a best response to x.
- y is not a Condorcet winner  $\Rightarrow \forall x \mid xTy, x$  is a best response to y.
- (x,y) is a pure Nash equilibrium iff  $\left\{ \begin{array}{l} x=y\\ x \text{ is a Condorcet winner} \end{array} \right.$
- x dominates y in  $(X, g) \Leftrightarrow x$  covers y
  - $\bullet$  UC(T) is the set of undominated strategies
  - $UC^{\infty}(T)$  is the set of strategies not sequentially dominated.

#### Theorem

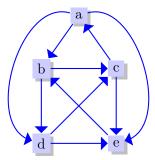
A tournament game has a unique Nash equilibrium in mixed strategy, and this equilibrium is symmetric.

# Definition (Bipartisan Set)

Let  $T \in \mathcal{T}(X)$ .

The Bipartisan set BP(X) is the support of the unique mixed equilibrium of the tournament game associated with T.

Stéphane Airiau (ILLC) COMSOC 2009 31 / 47 Stéphane Airiau (ILLC) COMSOC 2009 32 / 4



| ightharpoons   | a  | b                  | c  | d  | e  |
|----------------|----|--------------------|----|----|----|
| $\overline{a}$ | 0  | 1<br>0<br>-1<br>-1 | -1 | 1  | 1  |
| b              | -1 | 0                  | 1  | 1  | -1 |
| c              | 1  | -1                 | 0  | -1 | 1  |
| d              | -1 | -1                 | 1  | 0  | 1  |
| e              | -1 | 1                  | -1 | -1 | 0  |

Stéphane Airiau (ILLC)

COMSOC 2009

33 / 47

Stéphane Airiau (ILLC)

#### COMSOC 2009

# Is y a good outcome? $T^{-}(y)$ y $T^{+}(y)$

For a solution tournament  $\mathscr{S}$  and  $T \in \mathscr{T}(X)$ ,  $\forall (x,y) \in X^2 \ xD(\mathscr{S},T)y \Leftrightarrow x \in S(T \mid T^-(y))$  x is a contestation of y for T according to  $\mathscr{S}$ .

### Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
- 7 Knockout tournaments
- 8 Notes on the size of the choice set

#### Bank's set

There exists a unique tournament solution B such that

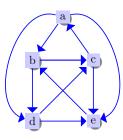
$$\forall T \in \mathcal{T}(X), \ o(T) \ge 2 \Rightarrow B(T) = D(B, T)^{-}(X)$$

 $D(B,T)^-(X)$  is the set of points in X which are contestation of some point of X according to  $\mathscr{S}$ .

#### Proposition

 $x \in B(T)$  iff  $\exists Y \subset X$  such that  $x \in Y$  and T|Y i an ordering for which x is the winner and no point of X beats all the points of Y.

Stéphane Airiau (ILLC) COMSOC 2009 35 / 47 Stéphane Airiau (ILLC) COMSOC 2009 36 / 4



a 
$$Y = \{d\}, a \succ d \text{ and } aTb, dTc, aTe.$$

b 
$$Y = \{d, c\}, b \succ d \succ c \text{ and } cTa, cTe.$$

c 
$$Y = \{a\}, c \succ a \text{ and } aTb, aTd, aTe.$$

d 
$$Y = \{c, e\}, d \succ c \succ e \text{ and } cTa, eTb.$$

e 
$$Y = \{b\}$$
 no because of  $aTb$  and  $aTe$ .

$$Y = \{b, c\}$$
 not an ordering.

$$B(T) = \{a, b, c, d\}$$

COMSOC 2009

#### Outline

- 1 Introduction: Reasoning about pairwise competition
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
- Knockout tournaments
- 8 Notes on the size of the choice set

Stéphane Airiau (ILLC

COMSOC 2009

#### Definition (Algebraic solution)

A tournament solution  $\mathcal{S}$  is computable by a binary tree if, for any order n, there exists a labelled binary tree (N, A, i) of order n such that, for any tournament  $T \in \mathcal{T}(X)$  of order  $n, \mathcal{S}(T)$  is the set of winners of T along (N, T, i) for all drawing of X.

 $\mathcal{S}$  is computable by a binary tree iff  $\mathcal{S}$  is algebraic.

- Any algebraic tournament solution selects a winner in the top cycle.
- The Copeland and Markov solutions are not algebraic.
- Strengthening a winner can make her lose.
- There exists a non monotonous algebraic tournament solution.

Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803,1977

McKelvey, Niemi. A multistage game representation of sophisticated voting for binary procedures. Journal of Economic Theory 18:1-22,1978

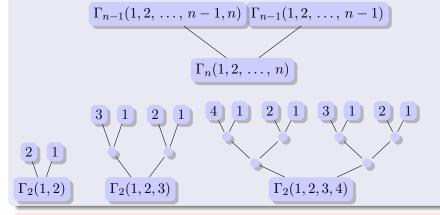
téphane Airiau (ILLC

COMSOC 2009

Stéphane Airiau (ILLC

COMSOC 2009

#### Multistage elimination tree or sophisticated agenda



Miller. Graph Theoretical approaches to the Theory of Voting. American Journal of Political Sciences, 21:769-803,1977

Hervé Moulin. Dominance Solvable Voting Schemes,  $\it Econometrica, 47(6):1337-1352,1979$ 

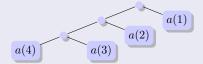
Stéphane Airiau (ILLC) COMSOC 2009 41 / 4

#### Property

Let  $\mathcal{B}$  the set of all permutations of  $X = \{1, \ldots, n\}$ Let  $a \in \mathcal{B}$ ,  $w(\Gamma_n, T, a)$  is the winner of the tournament  $T \in \mathcal{T}(X)$  along the sophisticated agenda  $\Gamma_n$  for the drawing a.

$$\{w(\Gamma_n, T, a), a \in \mathcal{B}\} = Bank(T)$$

#### Sophisticated voting on simple agendas



- $\Gamma_k(a)$ : outcome of *strategic* voting on the simple agenda of order k with agenda a
- $a_{-n} = a(1) \cdot a(2) \dots a(n-2) \cdot a(n-1)$
- $a_{-(n-1)} = a(1) \cdot a(2) \dots a(n-2) \cdot a(n) \dots a(n)$

Voting for a(n) or  $a(n-1) \Rightarrow$  Comparing  $\Gamma_{n-1}(a_{-n})$  and  $\Gamma_{n-1}(a_{-(n-1)})$ , i.e.,  $\Gamma_n(a) = \Gamma_{n-1}(a_{-n}) \cdot \Gamma_{n-1}(a_{-(n-1)})$ 

#### Sophisticated agenda and sophisticated voting

Strategic voting one a simple agenda results in choosing the winner of the associated sophisticated agenda.

Stéphane Airiau (ILLC)

COMSOC 2009

#### Knockout tournaments

# Definition (General Knockout Tournament)

Given a set N of players and a matrix P such that  $P_{ij}$  denotes the probability that player i wins against player j in a pairwise elimination match and  $\forall (i,j) \in N^2 \ 0 \le P_{ij} = 1 - P_{ji} \le 1$ ,

- a knockout tournament KTN = (T, S) is defined by:
  - A tournament structure T: a binary tree with |N| leaf nodes
  - ullet A seeding S: a bijection between the players in N and the leaf nodes of T

#### Theorem

It is  $\mathcal{NP}$ -complete to decide whether there exists a tournament structure KT with round placement R such that a target player  $k \in N$  will win the tournament.

Thuc Vu, Alon Altman, Yoav Shoham, "On the Complexity of Schedule Control Problems for Knockout Tournaments", AAMAS 2009

Stéphane Airiau (ILLC) COMSOC 2009 43 / 47 Stéphane Airiau (ILLC) COMSOC 2009 44 / 47

#### Outline

- 1 Introduction: Reasoning about pairwise competition
- 2 Desirable properties of solution concepts
- 3 Solution based on scoring and Ranking
- 4 Solutions based on Covering
- 5 Solution based on Game Theory
- 6 Contestation Process
- Knockout tournaments
- 8 Notes on the size of the choice set

Stéphane Airiau (ILLC)

COMSOC 2009

15 / 4

# Bibliography

- Jean Francois Laslier Tournament Solution and Majority Voting, Springer 1997.
- Thuc Vu, Alon Altman, Yoav Shoham, "On the Complexity of Schedule Control Problems for Knockout Tournaments", AAMAS 2009.
- F. Brandt, F. Fischer, P. Harrenstein, and M. Mair. "A computational analysis of the tournament equilibrium set". AAAI-2008, COMSOC-2008.

Stéphane Airiau (ILLC) COMSOC 2009 47 / 47

#### Properties

For Bipartisan set, minimal covering set, iterated uncovered set and the top cycle

- $\bullet$  if  $\exists$  a Condorcet winner, the winner is unique (definition)
- if #\( \frac{1}{2}\) a Condorcet winner, the set of winners contains at least 3 alternatives.

#### Properties

If all tournaments are equiprobable, the top cycle is almost surely the whole set of alternatives.

Probability that every alternative is in the Banks set in a random tournament goes to one as the number of alternatives goes to infinity. (every alternative is in the Banks set in almost all tournaments).

Mark Fey. Choosing from a large tournament, Social Choice and Welfare, 31(2):301-309

Stéphane Airiau (ILLC) COMSOC 2009 46 / 47