Coursework \#3

```
Deadline: Wednesday, 1 April 2009, 15:00
```

Question 1 (10 marks)
For this question, we restrict attention to judgement aggregation problems with the agenda $\{A, \neg A, B, \neg B, A \wedge B, \neg(A \wedge B)\}$. We know that there exists no judgement aggregation rule for this agenda that is consistent, complete, universal, anonymous, neutral, and independent.
(a) Show that the $2 / 3$-supermajority rule (which accepts a proposition from the agenda if and only if strictly more than $2 / 3$ of the individuals accept it) satisfies all of these axioms, except for completeness. (Hint: The difficult part is to prove consistency.)
(b) Show that no supermajority rule with a quota of less than $2 / 3$ will always produce a consistent collective judgement set.

Question 2 (10 marks)
Suppose three towns, A, B and C, are located in the plane \mathbb{R}^{2}. We have to decide where to build a new hospital H. Any point in the plane is feasible. The disutility of a town is the distance of that town to H.
(a) Show that the Pareto optimal locations for H are precisely those that are lying within the triangle $\triangle A B C$.
(b) Show that we have an equality-efficiency dilemma iff that triangle is obtuse angled (that is, iff it has an angle of more than 90 degrees).
(c) Give a geometric characterisation of the optimum of the egalitarian CUF in case the triangle is obtuse angled.
(Adapted from H. Moulin, Axioms of Cooperative Decision Making, CUP, 1988.)

Question 3 (10 marks)
Suppose there are n agents located anywhere on the interval $[0,1]$. We have to decide where to build an amusement park A, also anywhere on the same interval. The disutility of an agent is its distance to A.
(a) What is the solution selected by the egalitarian CUF?
(b) What is the solution selected by the elitist (n-rank dictator) CUF?
(c) For arbitrary $k \leq n$, give a general algorithm to compute a solution that is optimal with respect to the k-rank dictator CUF. What is the complexity of your algorithm?

