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Preference Representation

Collective decision making is driven by the interests of individuals,

who must be able to communicate preferences (directly through full

revelation, or indirectly via “moves” in a game).

• So far, we have treated this topic only very abstractly , by

saying that agents “have” some preference structure.

• Preferences representation in combinatorial domains:

– electing a committee of size k from amongst n candidates

requires expressing preferences over
(

n
k

)

possible committees;

– negotiation over n goods requires expressing preferences

over 2n alternative bundles.

• We shall review several preference representation languages.

Some will be discussed in more detail later on in the course.

We shall be interested in the properties of these languages,

such as expressive power and comparative succinctness.
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Plan for Today

• General requirements on preference representation languages

• Distinguish cardinal and ordinal preference structures

• Different classes of utility functions (cardinal preferences):

monotonic, dichotomous, modular, concave utilities . . .

• Review of languages for representing utility functions:

explicit form, k-additive form, weighted goals, . . .

• Discussion of properties of different representation languages:

expressive power , comparative succinctness, complexity

• Review of languages for ordinal preference representation:

prioritised goals and ceteris paribus preferences
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Preference Representation Languages

The following questions should be addressed when you investigate a

preference representation language:

• Cognitive relevance: How close is a given language to the way

in which humans would express their preferences?

• Elicitation: How difficult is it to elicit the preferences of an

agent so as to represent them in the chosen language?

• Expressive power: Can the chosen language encode all the

preference structures we are interested in?

• Succinctness: Is the representation of (typical) structures

succinct? Is one language more succinct than the other?

• Complexity: What is the computational complexity of related

decision problems, such as comparing two alternatives?

We are going to concentrate on expressive power and succinctness.
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Cardinal and Ordinal Preferences

A preference structure represents an agent’s preferences over a set

of alternatives X . There are different types of preference structures:

• A cardinal preference structure is a (utility or valuation)

function u : X → Val , where Val is usually a set of numerical

values such as N or R.

• An ordinal preference structure is a binary relation � over the

set of alternatives (reflexive, transitive and connected).

Note that we shall assume that X is finite.

Remark: What I refer to as connectedness is mostly called

completeness in the literature.
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Some Observations

• Intrapersonal comparison: ordinal and cardinal preferences allow for

comparing the satisfaction of an agent for different alternatives

• Interpersonal comparison: ordinal preferences don’t allow for

interpersonal comparison (“Ann likes x more than Bob likes y”)

• Preference intensity: ordinal preferences cannot express preference

intensity; cardinal preferences can (subject to Val being numerical)

• Representability: a connected ordinal preference relation � is

representable by a utility function u: x � y iff u(x) ≤ u(y)

• Cognitive relevance: hard to make general statements, but at least

ordinal preferences don’t require reasoning with numerical utilities

• Explicit representation: the explicit representation of cardinal and

ordinal preferences have space complexity O(|X |) resp. O(|X |2)
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Preferences in Resource Allocation Scenarios

A representative example for a combinatorial domain:

Let R be a finite set of indivisible resources (goods) with |R| = n.

Assume there are no externalities: agent preferences only depend

on their assigned bundle (not on, say, the allocation as a whole) ;

need to model preference structures over X = 2R

Hence, the explicit representation has exponential space complexity.

Possible ways out:

• only consider restricted classes of preference structures, which

may allow for a more concise representation; and/or

• consider (and compare) different representation languages.

We start with the case of utility functions . . .
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Classes of Utility Functions

Now a utility function is a mapping u : 2R → R.

• u is normalised iff u({ }) = 0

• u is non-negative iff u(X) ≥ 0

• u is monotonic iff u(X) ≤ u(Y ) whenever X ⊆ Y

• u is dichotomous iff u(X) = 0 or u(X) = 1

• u is modular iff u(X ∪ Y ) = u(X) + u(Y ) − u(X ∩ Y )

• u is additive iff u(X) =
∑

x∈X

u({x})

Important: For the above definitions, the respective (in)equalities

are understood to hold for all bundles X, Y ⊆ R.
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Modular and Additive Utilities

Modularity and additivity are really just two different names for

the same thing (well, almost):

Proposition 1 A utility function is additive iff it is both modular

and normalised.

Proof: “⇒”: obvious X

“⇐”: Let X ⊆ R, x ∈ X.

¿From modularity, we get u(X) = u(X\{x}) + u({x}) − u({ }).

As u is normalised, we obtain u(X) = u(X\{x}) + u({x}).

If we iterate this step |X| times, we get u(X) =
∑

x∈X

u({x}). X
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More Classes of Utility Functions

A few more commonly used classes of utility functions:

• u is submodular iff u(X ∪ Y ) ≤ u(X) + u(Y ) − u(X ∩ Y )

• u is supermodular iff u(X ∪ Y ) ≥ u(X) + u(Y ) − u(X ∩ Y )

• u is concave iff u(X ∪ Y ) − u(Y ) ≤ u(X ∪ Z) − u(Z) for Y ⊇ Z

– Intuition: marginal utility (of obtaining X) decreases as we

move to a better starting position (namely from Z to Y )

• u is convex iff u(X ∪ Y ) − u(Y ) ≥ u(X ∪ Z) − u(Z) for Y ⊇ Z
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Observations

The following relationships amongst some of these classes of utility

functions are easily checked:

• submodular ∩ supermodular = modular

• u submodular iff −u supermodular

• u concave iff −u convex

• concave ⊆ submodular (Proof: set Z = X ∩ Y )

• convex ⊆ supermodular
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Explicit Representation

The explicit form of representing a utility function u consists of a

table listing for every bundle X ⊆ R the utility u(X).

By convention, table entries with u(X) = 0 may be omitted.

• the explicit form is fully expressive:

any utility function u : 2R → R may be so described

• the explicit form is not concise: it may require up to 2n entries

Even very simple utility functions may require exponential space:

e.g. the additive function mapping bundles to their cardinality.

Remark: Of course, any additive utility function could be encoded

very concisely: just store the utilities for individual goods + the

information that this is an additive function ; linear space

But this is not a general language (not fully expressive).
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The k-additive Form

• A utility function is k-additive iff the utility assigned to a

bundle X can be represented as the sum of marginal utilities

for subsets of X with cardinality ≤ k (limited synergies).

• The k-additive form of representing utility functions:

u(X) =
∑

T⊆X

αT with αT = 0 whenever |T | > k

Example: u = 3.x1 + 7.x2 − 2.x2.x3 is a 2-additive function

• That is, specifying a utility function in this language means

specifying the coefficients αT for bundles T ⊆ R.

• In the context of resource allocation, the value αT can be seen

as the additional benefit incurred from owning the items in T

together , i.e. beyond the benefit of owning all proper subsets.
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Expressive Power

The k-additive form is fully expressive, if we choose k large enough:

Proposition 2 Any utility function is representable in k-additive

form for some k ≤ |R|.

Proof: For any utility function u, we can define coefficients αX :

α{ } = u({ })

αX = u(X) −
∑

T⊂X αT for all X ⊆ R with X 6= { }

Hence, u(X) =
∑

T⊆X αT , which is k-additive for k = |R|. X

The k-additive form allows for a parametrisation of synergies:

• 1-additive = modular (no synergies)

• |R|-additive = general (any kind of synergies)

• . . . and everything in between

Ulle Endriss 14

Preference Representation in Combinatorial Domains COMSOC 2008

Comparative Succinctness

If two languages can express the same class of utility functions,

which should we use? An important criterion is succinctness.

Let L and L′ be two languages for defining utilities. We say that L′

is at least as succinct as L, denoted by L � L′, iff there exist a

mapping f : L → L′ and a polynomial function p such that:

• u ≡ f(u) for all u ∈ L (they represent the same functions); and

• size(f(u)) ≤ p(size(u)) for all u ∈ L (polysize reduction).

Write L ≺ L′ (strictly less succinct) iff L � L′ but not L′ � L.

Two languages can also be incomparable in view of succinctness.
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Explicit vs. k-additive Form

Proposition 3 The explicit and the k-additive form are

incomparable in view of succinctness.

Proof sketch: The following two functions can be used to prove the

mutual lack of a polysize reduction:

• u1(X) = |X|: representing u1 requires |R| non-zero coefficients

in the k-additive form (linear); but 2|R| − 1 non-zero values in

the explicit form (exponential).

• u2(X) = 1 for |X| = 1 and u2(X) = 0 otherwise: requires |R|

non-zero values in the explicit form (linear); but 2|R| − 1

non-zero coefficients in the k-additive form (exponential):

αT =1 for |T |=1, αT =−2 for |T |=2, αT =3 for |T |=3, . . .

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent Resource Al-

location with k-add. Utility Functions. DIMACS-LAMSADE Workshop 2004.
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Weighted Propositional Formulas

An alternative approach to preference representation is based on

weighted propositional formulas . . .

Notation: finite set of propositional letters PS (representing goods);

propositional language LPS over PS can describe requirements.

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

Example: {(p ∨ q ∨ r, 7), (p ∧ q,−2), (¬s, 1)}

I If we restrict goals to conjunctions of atoms (of length ≤ k),

then this corresponds directly to the k-additive form.
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Some Expressivity and Succinctness Results

Examples for expressivity and succinctness results (no proofs):

Proposition 4 If formulas are rest riced to literals, then we can

represent all modular utility functions, and only those.

Proposition 5 If formulas and weights have to be positive, then we

can represent all non-negative monotonic functions, and only those.

Proposition 6 The language of clauses is as succinct as the

language of cubes (= conjunctions of literals).

Proposition 7 The languages of positive clauses and positive

cubes are incomparable in terms of succinctness.

Y. Chevaleyre, U. Endriss, and J. Lang. Expressive Power of Weighted Propo-

sitional Formulas for Cardinal Preference Modelling. Proc. KR-2006.

J. Uckelman and U. Endriss. Preference Representation with Weighted Goals:

Expressivity, Succinctness, Complexity. Proc. AiPref-2007.
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Complexity

Let L(H, H ′) be the language of weighted formulas for which

formulas satisfy restriction H (e.g. only clauses or only atoms) and

for which weights satisfy restriction H ′ (e.g. only positive reals).

Consider the following decision problem:

Max-Utility(H,H’)

Given: Goal base G ∈ L(H, H ′) and K ∈ Z

Question: Is there an M ∈ 2PS such that uG(M) ≥ K?

Some basic results:

• Max-Utility(H,H’) is in NP for any choice of H and H ′,

because we can always check uG(M) ≥ K in polynomial time.

• Max-Utility(all, all) is NP-complete (reduction from Sat),

and so is Max-Utility(2-clauses, {1}) (= Max2Sat).

• Max-Utility(literals, all) & Max-Utility(pos, pos) are in P .
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Bidding Languages

In combinatorial auctions the process of bidding amounts to

transmitting a cardinal preference structure (valuation function).

People have developed special bidding languages for this purpose.

Example for a bid using the so-called OR-language:

〈{a}, 2〉 or 〈{b}, 2〉 or 〈{c}, 1〉 or 〈{a, b}, 5〉

This expresses that the bidder is happy to buy any of the given sets

at the prices specified, provided the sets selected do not overlap.

We will discuss bidding languages later on in the course.
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Program-based Representations

Yet another approach to representing preferences would be to define

utilities in terms of a program: input bundle, output utility value.

But not just any program will do. Requirements:

• it must be possible to efficiently validate that a given string

constitutes a syntactically correct program; and

• we have to have an effective method of computing the output of

the program for any given input.

Dunne et al. (2005) propose such a program-based approach based

on so-called straight-line programs (warning: rather technical).

One result says that any function computable by a deterministic

TM in time T is representable by an SLP with O(T log T ) lines.

P.E. Dunne, M. Wooldridge, and M. Laurence. The Complexity of Contract

Negotiation. Artificial Intelligence, 164(1–2):23–46, 2005.
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Ordinal Preferences

Next we are going to look into different languages for representing

ordinal preference structures.

Recall that an explicit representation of an ordinal preference

relation � over 2n alternatives requires space up to O(2n · 2n):

for each pair of bundles, say which one is preferred.
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Prioritised Goals

Again, associate goods with propositional letters in PS and bundles

with models M ∈ 2PS . Goals can be expressed as formulas in the

propositional language LPS .

Instead of weights, we now have a priority relation over goals.

Assuming this priority relation is a total order, it can be

represented by a function rank : N → N mapping each (index of a)

goal to its rank. By convention, a lower rank means higher priority .

A goal base is now a finite set of goals with an associated rank

function: G = 〈{ϕ1, . . . , ϕm}, rank〉.

I Ideally, all goals will get satisfied. But if not, how can we extend

a priority relation over goals to a preference relation over models?

Ulle Endriss 23

Preference Representation in Combinatorial Domains COMSOC 2008

Combining Priorities

There are several options (convention: min({ }) = +∞):

• Best-out ordering:

M � M ′ iff min{rank(i) | M 6|= ϕi} ≤ min{rank(i) | M ′ 6|= ϕi}

That is, preference depends (only) on the rank of the most

important goal that is being violated.

• Discrimin ordering:

Let d(M, M ′) = min{rank(i) | M 6|= ϕi and M ′ |= ϕi} be the

rank of the most important “discriminating” goal.

M � M ′ iff d(M, M ′) ≤ d(M ′, M) or

{ϕi | M |= ϕi} = {ϕi | M ′ |= ϕi}
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Combining Priorities (cont.)

• Leximin ordering:

Let dk(M) = |{ϕi | M |= ϕi and rank(ϕi) = k}| be the number

of goals of rank k that are satisfied by alternative M .

M � M ′ iff (1) for all k: dk(M) = dk(M ′) or

(2) there exists a k such that dk(M) < dk(M ′)

and for all j < k: dj(M) = dj(M
′)
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Properties

• None of the three variants of combining prioritised goals leads

to a fully expressive preference representation language.

• For the strict preference relations we have:

– best-out preference entails discrimin preference; and

– discrimin preference entails leximin preference
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Ceteris Paribus Preferences

In the language of ceteris paribus preferences, preferences are

expressed as statements of the form C : ϕ > ϕ′, meaning:

“If C is true, all other things being equal, I prefer

alternatives satisfying ϕ ∧ ¬ϕ′ over those satisf. ¬ϕ ∧ ϕ′.”

The “other things” are the truth values of the propositional

variables not occurring in ϕ and ϕ′. A preference relation can be

constructed as the transitive closure of the union of individual

preference statements.

Discussion: interesting from a cognitive point of view (close to

human intuition), but of rather high complexity .

An important sublanguage of ceteris paribus preferences, imposing

various restrictions on goals, are CP-nets (; next week).
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Summary

We have reviewed several preference representation languages for

both cardinal and ordinal preference structures.

• The computational aspects of preference representation are

crucial in combinatorial domains (such as resource allocation).

• We have emphasised expressive power and succinctness.

• Languages considered (there are more):

– cardinal : explicit form, k-additive form, weighted goals,

bidding languages, and program-based representations

– ordinal : prioritised goals and ceteris paribus statements
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What next?

The aim of this lecture has been to present some preference

representation languages and to give examples for the kinds of

properties that we might want to prove about them.

Preferences will play a central role throughout the the course.

Specifically, they will come up again on two occasions:

• Next week, we will introduce CP-nets in the context of

discussing voting in combinatorial domains.

• We will see a number of expressivity and succinctness results

for bidding languages towards the end of the course, when we

will cover combinatorial auctions.
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