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What is MARA?

A tentative definition would be the following:

Multiagent Resource Allocation (MARA) is the process of

distributing a number of items amongst a number of agents.

What kind of items (resources) are being distributed? How are they

being distributed? And finally, why are they being distributed?
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Outline

• Concerning the specification of MARA problems:

– Overview of different types of resources

– Representation of the preferences of individual agents (done)

– Notions of social welfare to specify the quality of an

allocation (partly done already)

• Concerning methods for solving MARA problems:

– Discussion of allocation procedures (; future lectures)

– Some complexity results concerning allocation procedures

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,

J. Padget, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multia-

gent Resource Allocation. Informatica, 30:3–31, 2006.
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Types of Resources

• A central parameter in any resource allocation problem is the

nature of the resources themselves.

• There is a whole range of different types of resources, and each

of them may require different techniques . . .

• Distinguish properties of the resources themselves and

characteristics of the chosen allocation mechanism. Examples:

– Resource-inherent property: Is the resource perishable?

– Characteristic of the allocation mechanism: Can the

resource be shared amongst several agents?
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Continuous vs. Discrete Resources

• Resources may be continuous (e.g. energy) or discrete

(e.g. fruit).

• Discrete resources are indivisible; continuous resources may be

treated either as (infinitely) divisible or as indivisible (e.g. only

sell orange juice in units of 50 litres ; discretisation).

• Representation of a single bundle:

– Several continuous resources: vector over non-negative reals

– Several discrete resources: vector over non-negative integers

– Several distinguishable discrete resources: vector over {0, 1}

• Classical literature in economics mostly concentrates on a

single continuous resource; recent work in AI and Computer

Science focusses on discrete resources.
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Divisible or not

• Resources may be treated as being divisible or indivisible.

• Continuous/discrete: physical property of resources

Divisible/indivisible: feature of the allocation mechanism
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Sharable or not

• A sharable resource can be allocated to a number of different

agents at the same time. Examples:

– a photo taken by an earth observation satellite

– path in a network (network routing)

• More often though, resources are assumed to be non-sharable

and can only have a single owner at a time. Examples:

– energy to power a specific device

– fruit to be eaten by the agent obtaining it
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Static or not

Resources that do not change their properties during a negotiation

process are called static resources. There are at least two types of

resources that are not static:

• consumable goods such as fuel

• perishable goods such as food

In general, resources cannot be assumed to be static. However, in

many cases it is reasonable to assume that they are as far as the

negotiation process at hand is concerned.
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Single-unit vs. Multi-unit

• In single-unit settings there is exactly one copy of each type of

good; all items are distinguishable (e.g. several houses).

• In multi-unit settings there may be several copies of the same

type of good (e.g. 10 bottles of wine).

• Note that this distinction is only a matter or representation:

– Every multi-unit problem can be translated into a

single-unit problem by introducing new names for the items

(inefficient, but possible).

– Every single-unit problem is in fact also a (degenerate)

multi-unit problem.

• Multi-unit problems allow for a more compact representation of

allocations and preferences, but also require a richer language

(variables ranging over integers, not just binary values).
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Resources vs. Tasks

• Tasks may be considered resources with negative utility .

• Hence, task allocation may be regarded a MARA problem.

• However, tasks are often coupled with constraints regarding

their coherent combination (timing).

Remark: From now on (for this and the next lecture), we are going

to deal with the allocation of static indivisible resources that are

available in single units and that cannot be shared . . .
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Setting

Set of agents A = {1..n} and finite set of indivisible resources R.

An allocation A is a partitioning of R amongst the agents in A.

Each agent i ∈ A has got a utility function ui : 2R → R.

We usually write ui(A) as a shorthand for ui(A(i)).

We shall sometimes refer to the preference relation �i induced by

the utility function ui: R �i R′ iff ui(R) ≤ ui(R
′).

Remark: MARA with indivisible resources is a prime example for

a combinatorial domain. We have seen how to represent agent

preferences in such domains in earlier lectures.
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Social Welfare

An important parameter in the specification of a MARA problem

concerns our goals: what kind of allocation do we want to achieve?

• Success may depend on a single factor (e.g. revenue of an

auctioneer), but more often on an aggregation of preferences

of the individual agents in the system.

• Concepts from social choice theory and welfare economics can

be useful here (“multiagent systems as societies of agents”).

• Here we use the term social welfare in a broad sense, to

describe the quality of an allocation in view of a suitable

aggregation of the individual agent preferences.

Pareto optimality is probably the most basic criterion for social

optimality, but there are many others . . .
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Social Welfare Orderings

A collective utility function is a function W : Rn → R mapping

utility vectors to the reals. Here we define them over allocations A

(inducing utility vectors):

• The utilitarian social welfare is defined as the sum of utilities:

swu(A) =
∑

i∈Agents

ui(A)

• The egalitarian social welfare is given by the utility of the

agent that is currently worst off:

swe(A) = min{ui(A) | i ∈ Agents}

• The Nash product is the product of the individual utilities:

swN (A) =
∏

i∈Agents

ui(A)
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Social Welfare Orderings (cont.)

• The elitist social welfare is given by the utility of the agent

that is currently best off:

swel(A) = max{ui(A) | i ∈ Agents}

• Let ~uA be the ordered utility vector induced by allocation A.

Then the k-rank dictator CUF swk is defined as follows:

swk(A) = (~uA)k

Recall that swk is the same as the egalitarian CUF for k = 1

and the same as the elitist CUF for k = n (number of agents).

• The leximin-ordering �` is a social welfare ordering that may

be regarded as a refinement of the egalitarian CUF:

A �` A′ ⇔ ~uA lexically precedes ~uA′ (not necessarily strictly)
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Normalised Utility

It can be useful to normalise utility functions before aggregation:

• If A0 is the initial allocation, then we may restrict attention to

allocations A that Pareto-dominate A0 and use utility gains

ui(A) − ui(A0) rather than ui(A) as problem input.

• We could evaluate an agent’s utility gains relative to the gains

it could expect in the best possible case. Define an agent’s

maximum utility wrt. a set Adm of admissible allocations:

ûi = max{ui(A) |A ∈ Adm}

Then define the normalised individual utility of agent i:

u′
i(A) =

ui(A)

ûi

The optimum of the leximin-ordering wrt. normalised utilities

is known as the Kalai-Smorodinsky solution.
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Ordered Weighted Averaging

We can build families of parametrised CUFs that induce several

SWOs. An example are the ordered weighted averaging operators.

Let w = 〈w1, w2, . . . , wn〉 be a vector of real numbers. Define:

sww(A) =
∑

i∈Agents

wi · ~u(A)i

This generalises several other SWOs:

• If w is such that wi = 0 for all i 6= k and wk = 1, then we have

exactly the k-rank dictator CUF.

• If wi = 1 for all i, then we obtain the utilitarian CUF.

• If wi = αi−1, with α > 0, then the leximin-ordering is the limit

of the SWO induced by sww as α goes to 0.
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Envy-Freeness

An allocation is called envy-free iff no agent would rather have one

of the bundles allocated to any of the other agents:

A(i) �i A(j)

Recall that A(i) is the bundle allocated to agent i in allocation A.

Note that envy-free allocations do not always exist (at least not if

we require either complete or Pareto optimal allocations).
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Example

Consider the following example with two agents and three goods:

A = {1, 2} and R = {a, b, c}. Suppose utility functions are additive:

u1({a}) = 18 u1({b}) = 12 u1({c}) = 8

u2({a}) = 15 u2({b}) = 8 u2({c}) = 12

Let A be the allocation giving a to agent 1 and b and c to agent 2.

• A has maximal egalitarian social welfare (18); utilitarian social

welfare is not maximal (38 rather than 42); and neither is

elitist social welfare (20 rather than 38).

• A is Pareto optimal and leximin-optimal , but not envy-free.

• There is no allocation that would be both Pareto optimal and

envy-free. But if we change u1({a}) = 20 (from 18), then A

becomes Pareto optimal and envy free.
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Degrees of Envy

As we cannot always ensure envy-free allocations, another approach

would be to try to reduce envy as much as possible.

But what does that actually mean?

A possible approach to systematically defining different ways of

measuring the degree of envy of an allocation:

• Envy between two agents:

max{ui(A(j)) − ui(A(i)), 0} [or even without max]

• Degree of envy of a single agent:

0-1, max, sum

• Degree of envy of a society:

max, sum [or indeed any SWO/CUF]
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Allocation Procedures and Complexity

• We have now seen the various components that are needed to

specify a MARA problem (type of resource, agent preferences,

optimality criterion).

• In the next lecture we are going to see how agents can

negotiate optimal allocations in a distributed manner and later

on in the course we are going to see a centralised allocation

procedure (combinatorial auctions).

• Now we are going to look into the computational complexity of

the problem of finding an optimal allocation, independently

from any specific allocation procedure.
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Resource Allocation Problems

For the purpose of formally stating the resource allocation

problems for which we want to analyse the complexity, let a

resource allocation setting 〈A,R,U〉 be given by:

• A = {1, 2 . . . , n} is a set of n agents;

• R = {r1, r2, . . . , rm} is a collection of m resources; and

• U = {u1, u2, . . . , un} describes the utility function ui : 2R → Q

for the agent i ∈ A.

The set of allocations A is the set of partitionings of R amongst A

(or equivalently, the set of total functions from R to A).
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Welfare Optimisation

How hard is it to find an allocation with maximal social welfare?

Rephrase this optimisation problem as a decision problem:

Welfare Optimisation (WO)

Instance: 〈A,R,U〉; K ∈ Q

Question: Is there an allocation A such that swu(A) > K?

Unfortunately, the problem is intractable:

Theorem 1 Welfare Optimisation is NP-complete.

The proof (following slides) uses a reduction from a standard

reference problem (Set Packing) known to be NP-complete.

In the context of MARA, this kind of result seems to have first

been stated by Rothkopf et al. (1998).

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable

Combinational Auctions. Management Science, 44(8):1131–1147, 1998.
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Proof of NP-hardness

We are going to reduce our problem to Set Packing, one of the

standard problems known to be NP-complete:

Set Packing

Instance: Collection C of finite sets and K ∈ Q

Question: Is there a collection of disjoint sets C ′ ⊆ C s.t. |C′| > K?

Given an instance C of Set Packing, consider this MARA setting:

• Resources: each item in one of the sets in C is a resource

• Agents: one for each set in C + one other agent (called 0)

• Utilities: uC(R) = 1 if R = C and uC(R) = 0 otherwise;

u0(R) = 0 for all bundles R

That is, every agent values “its” bundle at 1 and every other

bundle at 0. Agent 0 values all bundles at 0.
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Proof of NP-hardness (cont.)

Observe that not every allocation immediately corresponds to a

valid solution of Set Packing: the bundles owned by individual

agents may not all be sets in C.

But: for every given allocation there exists an(other) allocation

with equal social welfare that does directly correspond to a valid

solution for Set Packing — just assign any goods owned by an

agent with utility 0 to agent 0 (this reallocation does not affect

social welfare). Note that social welfare is equal to |C ′|.

Hence, any algorithm for WO can also solve Set Packing

problems; so WO must be at least NP-hard. X
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Proof of Membership in NP

This part is in fact very easy . . .

Recall that a problem belongs to NP if it is possible to verify the

correctness of a candidate solution in polynomial time.

This is clearly the case here: Given an allocation A, we can

compute swu(A) in polynomial time. And A constitutes a correct

solution iff swu(A) > K. X
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Remarks

• To be precise, we have proved NP-hardness wrt. the number of

pairs of agents and bundles with non-zero utility . This

corresponds to the number of sets involved in Set Packing.

• Observe that this number itself may already be very high

(exponential in the number of goods).

• In other words, we have proved NP-completeness wrt. the

explicit form of representing utility functions.
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Representation Issues

• As for all complexity results, the representation of the input

problem is crucial: if the input is represented inefficiently (e.g.

using exponential space when this is not required), then

complexity results (expressed with respect to the size of the

input) may seem much more favourable than they really are.

• NP-completeness of Welfare Optimisation has been shown

with respect to several representations of utilities (such as the

k-additive form).

• In the sequel, the focus is on demonstrating what questions

people have been asking rather than on exact results.

Therefore, we do not give details regarding the representation

(but most results apply to a variety of representation forms).
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Welfare Improvement

The following problem is also NP-complete:

Welfare Improvement (WI)

Instance: 〈A,R,U〉; allocation A

Question: Is there an allocation A′ such that swu(A) < swu(A′)?

Given the close connection to Welfare Optimisation, this is not

very surprising.
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Pareto Optimality

A decision problem is said to be in coNP iff its complementary

problem (“is it not the case that . . . ”) is in NP.

Checking whether a given allocation is Pareto optimal is an

example for a coNP-complete decision problem:

Pareto Optimality (PO)

Instance: 〈A,R,U〉; allocation A

Question: Is A Pareto optimal?
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Envy-Freeness

Checking whether a given setting admits an envy-free allocation (if

all goods need to be allocated) is again NP-complete:

Envy-Freeness (EF)

Instance: 〈A,R,U〉

Question: Is there a (complete) allocation A that is envy-free?

Checking whether there is an allocation that is both Pareto optimal

and envy-free is even harder: Σp
2-complete (NP with NP oracle).

S. Bouveret and J. Lang. Efficiency and Envy-freeness in Fair Division of

Indivisible Goods: Logical Representation and Complexity. Proc. IJCAI-2005.
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Summary

We have given a first overview of the MARA research area . . .

• Specifying a MARA problem requires fixing at least the

following parameters: type of resource, agent preferences, and

social welfare or similar concept used to define global aims

• Decision problems arising in MARA are often intractable.

– Successful algorithm design is still possible, but ad-hoc

methods or brute-force algorithms won’t work.

– Sometimes negative complexity results can be circumvented

by imposing restrictions (say, on utility functions).

• More details can be found in the MARA Survey.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,

J. Padget, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multia-

gent Resource Allocation. Informatica, 30:3–31, 2006.
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What next?

Next we are going to review different types of allocation procedures

for finding a good allocation of resources to agents:

• Distributed allocation procedures: In distributed MARA the

emphasis is on understanding under what circumstances we can

expect socially optimal allocations to emerge when autonomous

agents negotiate a sequence of local deals.

• Cake-cutting procedures: The classical literature on fair

division has mostly addressed the case of a single divisible good

(a.k.a. a “cake”). Here the challenge is to devise an interactive

procedure that will guarantee, say, envy-free outcomes.

• Combinatorial auctions: Finding an allocation that maximises

utilitarian social welfare is equivalent to determining the

winners in a CA. We will look into optimisation algorithms for

CAs and also discuss strategic (game-theoretical) questions.
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