

Agent Coordination Mechanisms in the COMBINED Systems First Aid Case

Patrick Storms • Y'all • Waalwijk, The Netherlands AgentLink-III-TF3 • Budapest, Hungary • September 2005

Combined Systems (1)

- Chaotic Open world Multi-agent Based Intelligently NEtworked Decision support Systems
 - Large scale decision support systems in chaotic and complex environments
 - Early and improved situation awareness, decision making and action selection
 - Self-managing mechanisms and agent based techniques
 - And more...
- Demonstrator: crisis scenario in the Rotterdam Harbour

Combined Systems (2)

- October 2002 October 2006
- Decis Lab, Delft:
 - University of Amsterdam
 - Technical University Delft
 - TNO (contract research for companies, government bodies and public organizations)
 - Thales (multinational in defense, and communication systems)
 - Dutch SME subcontractors: Acklin, Y'All, Inology
- See <u>http://combined.decis.nl</u>

16 September 2005

Jobs

- Work needs to be allocated to emergency personnel, e.g. medics
- Evacuate
- Localize casualties
- Prioritize (Triage)
- Give medical attention

MINOR

MINOR

- People get sick after inhaling toxic gases
- People get hurt when crowd panics

Case (part of Harbour Scenario)

Case: casualties in the Rotterdam Harbour

MINOR

MORGUE

Assumptions

- Medics and casualties can communicate via PDAs
 - Cell phones (GSM/SMS, WAP, GPRS, UMTS)
 - Organizers (WiFi)
 - Active Triage Cards (RFID)
- Each medic and casualty is represented by a software agent
 - Agent executes on PDA
 - Agent interacts with other agents on PDAs
 - Network of agents that negotiate on medic-casualty assignment
- Benefits:
 - Medics are relieved from planning tasks
 - Casualties are sooner taken care of

16 September 2005

(1) SMDS Approach

- Self Managing Distributed Systems
 - Knowledge base system (KBS) for system resources, with formal descriptions of capabilities, dependencies and constraints
 - Plan for execution is inferred from KBS, based on a goal or information need
 - Plan is executed and monitored
 - Implementation: COMPASS (Thales)
- Continuously searching for an overall optimum

(2) Organizational Approach

- Agents act using "social rules", e.g.
 - Medics will ask for work when entering scene
 - Medics will handover jobs when leaving scene
 - Severe casualties have higher priority
 - Make 1-to-1 deals with other medics
- Organizational principle
 - Determine work (strategy)
 - Divide work (strategy)
 - Coordinate work (management)
 - Perform work (operation)
- Coordination approaches, inspired by human organizations (Mintzberg)

(3) Ant-based Approach

- Ant-Based (similar to routing application)
 - No *a priori* assumptions on coordination
 - Agents interact through their environment (indirect)
 - Agents act according to simple behavioral rules
 - Coordination emerges
- Vehicle Routing with Time Windows
 - Medic Agents individually plan their task
 - Node = casualty
 - Time Window = time to next triage level

Current Challenges

- Define overall performance indicators
 - Functional
 - "When are the agents doing a good job?"
 - Utility function
 - Non-functional
 - Response to sudden disruptions in environment
 - Predictability: do we get similar results over and over
 - Communication load, CPU load
- Model MARA problem for Organizational approach
 - What are the resources?
 - Who negotiates?
 - How to value resources?
 - etc.

Functional Performance Indicator

- "When are the agents doing a good job?"
- Primary: penalty for transitions between triage levels, e.g.
 - After 25 minutes Green \rightarrow Yellow: penalty = 1
 - After 15 minutes Yellow \rightarrow Red: penalty = 5
 - After 10 minutes Red \rightarrow Black: penalty = 25
 - Performance indicator = (sum of penalties) / (max penalty)
 - Discussion: penalty is arbitrary \rightarrow what is a sensible choice?
- Secondary: minimize medic idle time
 - Medic is not idle when treating casualty
 - Medic is idle when in transit, or doing nothing
 - Performance indicator = (sum idle time) / (total time)

Agent Organization Approach

- Casualties are tasks (= treatment)
 - discrete, indivisible, non-sharable
 - perishable & dynamic
 - multi-unit
- Medics negotiate on tasks
 - Medic is allocated a "job list" of treatment tasks
 - Simple 1-to-1 deals
 - Medic is "happy" with his job list when:
 - All tasks on job list can be handled in time...
 - with minimal penalty
 - ... and minimal idle time
 - How to handle the dynamics in negotiation?

Thank you for your attention

<u>Contact</u>: Patrick Storms Y'All B.V. Grotestraat 182, NL-5141HD Waalwijk, The Netherlands <u>patrick@yall.nl</u>