Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity	Applications	Platforms	Conclusion
	00	00	000	0	00		

Introducing the MARA Survey

Y. Chevaleyre, P. Dunne, U. Endriss, J. Lang, M. Lemaître, N. Maudet, J. Padget, S. Phelps, J. A. Rodrìguez-Aguilar, P. Sousa

TFG-MARA, Budapest

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity	Applications	Platforms	Conclusion
	00	00	000	0	00		

- output of a collaborative process initiated during TFG-MARA I (Ljubljana, 2005)
- different persons took the responsability of different sections, plus crossed reviewing process
- to appear in Informatica, 2006

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity	Applications	Platforms	Conclusion
	00	00	000	0	00		

Introduction

Tentative definition...

MultiAgent Resource Allocation is the process of distributing a number of items amongst a number of agents

- What kind of items (resources)?
- How are they being distributed?
- Why are they being distributed?

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity	Applications	Platforms	Conclusion
	00	00	000	0	00		

Outline

- Type of resources
- Preference Representation
- Social Welfare
- Allocation Procedures
- Complexity Results
- Application Areas
- Simulation Platforms

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity	Applications	Platforms	Conclusion
	00	00	000	0	00		

Resources

• continuous vs. discrete

physical property of the resources

- **divisible** or not continuous resources are usually (infinitely) divisible
- shareable or not

same resource can be allocated to different agents at the same time

• static or not

resources may be consumable (fuel) or perishable (food)...

- single vs. multi-unit
- resources vs. tasks very similar, but task allocation involves specificities (time constraints)

Resources	Preference Representation \bullet	Social Welfare	Allocation Procedures	Complexity o	Applications	Platforms	Conclusion
Main Issue							

Preference Representation

Agents may have preferences:

- over the bundle they hold,
- over the bundles received by other agents (externalities)

The number of alternatives to consider (bundles of resources) is exponential, so we cannot simply rely on "naive" enumeration...

Main Issues

What are suitable representation languages for agents' preferences (expressiveness, succintness, elicitation...)

Resources	Preference Representation ○●	Social Welfare	Allocation Procedures	Complexity o	Applications	Platforms	Conclusion		
Examples o	Examples of Representations								

Preference Representation

The survey discusses a number of representations, falling into two broad categories:

- **quantitative** preferences mapping bundles of resources to numerical values
 - *k*-additive form (*algebraic-based, synergies between items*)
 - weighted prop. formulas (logic-based, bundles as models)
 - straight-line programs (program-based, computes value)
 - bidding languages (OR, XOR, etc.)
- ordinal preferences binary relation over the bundles of resources
 - prioritised goals (ordinal counterpart to weighted goals),
 - ceteris paribus preferences ("all other things being equal")

Resources	Preference Representation	Social Welfare ●○	Allocation Procedures	Complexity o	Applications	Platforms	Conclusion
Main Issues							

Social Welfare

We need to assess the quality of an allocation from the viewpoint of the society as a whole. This typically depends on the preferences of individual agents, as studied in depth in **welfare economics** and **social choice theory** So far, multiagent research has (almost) exclusively favored a **utilitarian** approach...

Main Issues

What notions of social welfare are relevant in the general context of MARA? In which specific application should we favour a given measure? Can we think of other measures?

Resources	Preference Representation	Social Welfare ○●	Allocation Procedures	Complexity o	Applications 00	Platforms	Conclusion	
Notions of Social Welfare								

Social Welfare

The survey discusses a number of notions of social welfare for both ordinal and cardinal agents' preferences

- Pareto efficiency
- Collective utility functions (utilitarian, egalitarian, Nash...)
- Leximin Ordering
- Envy-freeness
- Normalized utility

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity o	Applications	Platforms	Conclusion
Main Issues							

Allocation Procedures

Allocation procedures range from **centralised** (a single agent computes the final allocation) to truly **distributed** (sequences of local negotiation steps)

Main Issues

When should we prefer a centralised/distributed approach? What kind of protocol shall we devise in a given circumstance? Having fixed a protocol, what kind of properties can we prove?

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity o	Applications	Platforms	Conclusion
Protocols							

Protocols

Auction protocols

- way of reporting preferences (open-cry/sealed bids)?
- number of rounds? descending or ascending bids?
- type of bids allowed (bidding language)?

Negotiation protocols

- basic Contract-Net (announcement / bidding / assignement / confirmation)
- extensions for bundle of resources, deals without money...
- concurrent Contract-Net (pre-bidding phase, levelled commitments)

* E > < E > _

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity o	Applications	Platforms	Conclusion
Properties							

Properties of Procedures

Examples of desirable properties of allocation procedures includes:

- Termination is the procedure dead-lock free?
- **Truthfulness** —is there an incentive for agents to manipulate the procedure (e.g. by reporting false preferences)?
- **Convergence** —is it guaranteed to converge to an optimal allocation? Of course strongly related to strategies agents would implement...

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity	Applications	Platforms	Conclusion
	00	00	000	0	00		

Complexity Results

The allocation process involves, at different stages, **computational or communication resources** —and these resources are limited.

Complexity results indicate whether or not efficient algorithms can ever be found for different decision/optimisation problems

Main Issues

Global properties (Does there exist allocations with a given property?) **Negotiation properties** (Is there sequence of \mathcal{X} -deals leading from A to A'?) **Communication complexity** (Upper bounds on the length of these paths?)

(日)(四)(川)(川)(四)(日)

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity •	Applications	Platforms	Conclusion
Example of	Results						

Example of Results

Depends of the representation used to encode utility functions, but for most (expressive enough) languages, we know *e.g.* that:

- finding an allocation that maximises utilitarian sw is NP-hard
- finding an allocation that is both Pareto optimal and envy-free can be up to Σ^p₂-complete
- deciding wether there is a sequence of 1-deals leading from A to A' is NP-hard
- upper bound on the length of shortest path of 1-deals is $\leq n^m m(n-1)$ and $\geq \frac{77}{256}2^m 1$

(目)・(ヨト・ヨト・ヨ

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity o	Applications ●○	Platforms	Conclusion
Example Ap	oplications						

Application Areas

The survey introduces and discusses four problem domains:

- iIndustrial Procurement (IP)
- Earth Observation Satellites (EOS)
- Manufacturing Systems (MS)
- Grid Computing (GC)

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity o	Applications ○●	Platforms	Conclusion
Constraints							

Constraints of Applications (Examples)

- allocation of resources have to be efficient, but also to fair (EOS), safe (IP), or robust (MS)
- allocation problems may involve hundreds (IP) or even thousands (GC) of resources to be allocated
- users have to report **preferences**, **constraints** (IP, EOS, MS, GC), and even **negotiation strategies** (IP)

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity	Applications	Platforms	Conclusion
	00	00	000	0	00		

Simulation Platforms

In many cases, some assumptions do not hold, or theoretical results simply cannot be proven: it is then useful to do experimental work using simulation

Main Issues

Simulation vs. implementation, simulating time, agent modelling, extensibility and integration

The survey introduces a number of simulation frameworks:

- Swarm
- RePast
- Desmo-J
- AScape
- DEx

(ロト・日下・日下・日) ゆくの

Resources	Preference Representation	Social Welfare	Allocation Procedures	Complexity	Applications	Platforms	Conclusion
	00	00	000	0	00		

Conclusion

- Type of resources
- Preference Representation
- Social Welfare
- Allocation Procedures
- Complexity Results
- Application Areas
- Simulation Platforms

We didn't investigate (enough/at all): game-theoretical aspects (strategies, mechanism design), algorithmic aspects...

イヨトイヨト