Recent Complexity Results for Reachability Properties in Distributed Negotiation

Paul E. Dunne Dept. of Computer Science The University of Liverpool Liverpool, U.K.

Background Review I

 Given a resource allocation setting RAS=<A,R,U>

we are interested in negotiating an allocation of *R* among *A* when every deal - $\langle P, Q \rangle$ - is required to satisfy some condition $\Phi(P, Q)$.

 For example, ⊕(P,Q) ⇔ (<P,Q> reallocates exactly one resource and is 'rational') describes rational O-contracts.

Background Review II

- 3 decision problems:
- Φ-path(RAS,P^(s),P^(t))
 Can the allocation P^(t) be reached by a sequence of Φ-deals from P^(s)?
- b. Φ -accessible (RAS,P) Can an *optimal* allocation be reached by a sequence of Φ -deals from P?
- c. Φ -convergence(RAS) Does *every maximal* sequence of Φ -deals end in an optimal allocation?

Rational O-contracts – earlier results

- Problem Utility Form Complexity
- Φ -path SLP NP-hard
- Φ-path k-additive Open
- Φ -accessible SLP NP-hard
- Φ-accessible k-additive NP-hard
- Φ -converge SLP Open
- Φ -converge k-additive Open

Development

- At TFG-MARA in Ljubljana (Feb.-March, 2005), Jerome Lang conjectured Φ-path and Φ-accessible were PSPACE-complete (noting structural similarities with STRIPS planning and problems on CP-nets).
- Yann Chevaleyre introduced the problem
 Convergence, conjecturing this to be coNPhard (in both SLP and k-additive forms).

Rational O-contracts – new results

Problem	Utility Form	Complexity
(a) Φ -path	SLP	PSPACE-complete
Φ -path	k-additive	Open
(b) Φ -access	SLP	PSPACE-complete
Φ -access	k-additive	NP-hard
(c) Φ-conv	SLP	coNP-complete
(d) Φ-conv	k-additive	coNP-complete

16/09/2005

TFG-MARA 2 - Budapest

Brief Summary of Proof Methods

- Proof of (a) is non-trivial, and has three main parts:
- 1. Simulation of PSPACE Turing machines by SLP.
- 2. Simulation of SLP from (1) by rational O-contracts in RAS *with allocative externalities*.
- 3. Translation of RAS from (2) into "standard" (externality free) setting.
- (1) and (3) 'relatively easy'; bulk of argument concerns simulation required in (2).

Detailed proofs can be found in the report,

Paul E. Dunne and Yann Chevaleyre.

Negotiation can be as hard as planning: Deciding reachability properties of distributed negotiation schemes.

Tech. Report, ULCS-05-009, Dept. of Comp. Sci., Univ. of Liverpool.

http://www.csc.liv.ac.uk/research/techreports/tr2005/ulcs-05-009.pdf