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SPACE-TIME VARIATIONAL SADDLE POINT FORMULATIONS
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Abstract. The instationary Stokes and Navier−Stokes equations are considered in a simultaneously
space-time variational saddle point formulation, so involving both velocities u and pressure p. For the
instationary Stokes problem, it is shown that the corresponding operator is a boundedly invertible linear
mapping between H1 and H ′

2, both Hilbert spaces H1 and H2 being Cartesian products of (intersections
of) Bochner spaces, or duals of those. Based on these results, the operator that corresponds to the
Navier−Stokes equations is shown to map H1 into H ′

2, with a Fréchet derivative that, at any (u, p) ∈ H1,
is boundedly invertible. These results are essential for the numerical solution of the combined pair of
velocities and pressure as function of simultaneously space and time. Such a numerical approach allows
for the application of (adaptive) approximation from tensor products of spatial and temporal trial
spaces, with which the instationary problem can be solved at a computational complexity that is of
the order as for a corresponding stationary problem.
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1. Introduction

1.1. Background and motivation

The classical approach to the existence of weak solutions of the instationary, incompressible Navier−Stokes
equations views these equations as an infinite-dimensional dynamical system (see, e.g., [23], Chap. III and the
references there). In line with this view, most methods for the numerical solution of the instationary (Navier–)
Stokes equations are time marching methods: assuming that some approximate solution on time t is available,
for a sufficiently small time increment Δt > 0, an approximate solution on time t + Δt is computed by solving
a corresponding stationary problem.
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Because of the generally lacking global smoothness of the solution, efficient numerical schemes have to be
adaptive. With suitable time-marching schemes, it is possible to adapt both the spatial “mesh”, and the time
step Δt depending on t. We refer to [2] for an a posteriori error analysis of such an approach.

Combined space-time adaptivity, where Δt is adapted also depending on the spatial location, are not easily
accommodated by classical time stepping schemes, although some studies on local time stepping have appeared,
see e.g. [8, 9, 17].

In any case, due to the character of time marching, it seems hard to guarantee a kind of quasi-optimal
distribution of the ‘grid-points’ over space and time, and no mathematical results in this direction are presently
known to us.

To develop an alternative for time marching schemes, in [4, 18] we studied simultaneously space-time varia-
tional formulations of linear parabolic evolution equations. The operators defined by such variational formulations
were shown to be boundedly invertible between a Hilbert space H1 and the dual of another Hilbert space H2,
both H1 and H2 being Cartesian products of Bochner spaces or intersections of those.

By equipping these Bochner spaces with Riesz bases, being tensor products of temporal and spatial wavelet
collections, the space-time variational problem was written as an equivalent well-posed, bi-infinite, symmetric
positive definite matrix-vector system by forming normal equations. By running on this system an adaptive
wavelet scheme, in its original form being proposed in [3], a sequence of approximations is produced in linear
computational complexity that converges with the best possible nonlinear approximation rate from the basis,
i.e., the rate of the so-called best N -term approximations.

Because of the application of tensorized wavelet collections in space and time, under mild (Besov) smoothness
conditions the latter rate is equal (in some situations up to log-factors) to the best possible approximation rate
for the solution of a corresponding stationary problem from the spatial wavelet basis, i.e., there is (hardly) any
increase in the order of computational complexity as a consequence of the additional time dimension. Numerical
results illustrating this fact are given in [4].

Besides the computational realization of the best possible nonlinear approximation rate, the latter property
is a major advantage when the approximate solution is needed as function of simultaneously space and time,
as it is the case for example in time-dependent optimal control problems, see [10]. Indeed, with time marching
schemes this would require the availability of the approximate solutions simultaneously at all discrete times,
requiring a huge amount of memory.

The results concerning the adaptive wavelet solution method generalize to simultaneously space-time vari-
ational formulations of nonlinear parabolic evolution equations when they define a (two times continuously
differentiable) mapping from H1 into H ′

2, and the Fréchet derivative at the solution is boundedly invertible
between H1 and H ′

2 (see [20]). The latter condition is satisfied for example for a semi-linear equation with a
time-independent spatial operator.

Aiming at the application of space-time variational formulations to the incompressible instationary (Navier–)
Stokes equations, there are two possibilities.

The first one is to reduce these equations to problems for the divergence-free velocities only. Then the Stokes or
linearized Navier−Stokes equations read as a linear parabolic evolution problems, and the aforementioned results
concerning well-posed space-time variational formulations apply. The reduction to divergence-free velocities is
also the standard approach followed in the literature for demonstrating existence and uniqueness of solutions
(see e.g. [23], Chap. III).

In [21], we theoretically investigated the application of the adaptive wavelet scheme to the space-time vari-
ational divergence-free velocities formulation of the instationary Stokes problem. Wavelets suitable for this
formulation were constructed for rectangular domains in [21, 22].

1.2. This paper

The approach to tackle the instationary (Navier–) Stokes equations by a reduction to equations for the
divergence-free velocities has the obvious disadvantage that no results for the pressure are obtained. Moreover,
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the numerical solution of these equations by an adaptive wavelet scheme requires a divergence-free wavelet basis,
that seems to be realizable in restricted settings only.

Therefore, in this paper as the second possibility, we study simultaneously space-time variational saddle point
formulations of the (Navier–) Stokes equations for the combined pair of velocities and pressure. For both free-
slip and no-slip boundary conditions, we prove that the Stokes operator defined by this variational formulation
is boundedly invertible between a Hilbert space H1 and the dual H ′

2 of another Hilbert space H2. In order to be
able to arrive at this result, we have to assume H2-regularity of the Poisson or of the stationary Stokes operator,
which imposes certain smoothness or convexity conditions on the spatial domain.

In the space-times variational formulation of the present paper, both trial- and test-spaces H1 and H2 are
Cartesian products of (intersections of) of Bochner spaces for velocities and pressure. Based on the results [18]
for the space-time variational formulations of parabolic evolution equations, the velocity components of the
test- and trial-spaces are as expected, and so are the corresponding pressure components of either test- or trial-
space. The space for the remaining pressure component, now being fully determined by the instationary Stokes
operator, is less standard being the dual of the intersection of two Bochner spaces. In any case for polytopal
spatial domains, countable tensor product wavelet bases can be constructed for these spaces, which are separable
Hilbert spaces (although separability is not used a fortiori in the present paper).

To the best of our knowledge, well-posedness, i.e., bounded invertibility of the instationary Stokes operator
for the combined pair of velocities and pressure has not been established before. Compare the discussion at
the end of ([23], Chap. III, Sect. 1.5), where regularity of the pair of velocities and pressure is established only
under additional smoothness conditions on the right-hand side.

With the spaces H1 and H2 as above, additionally it will be shown that the instationary Navier–Stokes
operator maps H1 into H ′

2 (for no-slip conditions on two- and three-dimensional domains, and for free-slip
conditions on two-dimensional domains). A generalization of the results for the instationary Stokes operator
to the linearized instationary Navier–Stokes operator – the difference being a lower order spatial differential
operator– shows that the latter, at any (u, p) ∈ H1, is a boundedly invertible operator between H1 and H ′

2. A
first consequence is that any solution (u, p) ∈ H1 of the instationary Navier−Stokes equations is locally unique.
Secondly, assuming that a sufficiently accurate initial approximation is available, it shows that the adaptive
wavelet solver can be used to approximate the solution with the best possible nonlinear approximation rate in
space-time tensorized bases.

Finally, since also Lipschitz continuity of the instationary Navier–Stokes operator will be shown, using a
fixed-point argument we conclude existence of a space-time variational Navier–Stokes solution in H1, albeit
under a small data hypothesis.

This paper is organized as follows: in Section 2, necessary and sufficient conditions are recalled for bounded
invertibility of generalized linear saddle point problems. In Sections 3 and 4, these conditions are verified
for space-time variational formulations of the instationary Stokes problem with free- and no-slip boundary
conditions, respectively. In Section 5, the aforementioned mapping properties of the instationary Navier–Stokes
operator with homogeneous initial datum are verified.

Throughout, for positive constants c1, c2, c1 � c2 we will mean that c1 can be bounded by a multiple of c2,
independently of parameters on which c1 and c2 may depend. Obviously, c1 � c2 is defined as c2 � c1, and
c1 � c2 as c1 � c2 and c1 � c2.

2. Generalized saddle point problems

For reflexive Banach spaces U , V , P , and Q, and for bounded bilinear forms a : U × V → R, b : P × V → R,
and c : U × Q → R, we consider the problem of finding (u, p) ∈ U × P that, for given f ∈ V ′, g ∈ Q′, satisfy

a(u, v) + b(p, v) + c(u, q) = f(v) + g(q) (v ∈ V, q ∈ Q). (2.1)

In this section, we collect sufficient and necessary conditions for the corresponding L : (u, p) �→ (f, g) ∈
L(U ×P, V ′ ×Q′) to be boundedly invertible. These conditions can already be found in [1], and a Hilbert space
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setting, in [15]. Since some intermediate results will be used in the following sections, we have chosen to include
the short arguments.

(Bv)(p) = b(p, v) = (B′p)(v) and (Cu)(q) = c(u, q) = (C′q)(u).

We recall that for a closed subspace Z of a Banach space X the polar set Z0 ⊂ X ′ is defined by {f ∈ X ′ :
f(Z) = 0}.
Theorem 2.1. For given, bounded bilinear forms a, b and c as in (2.1), the variational problem (2.1) defines a
boundedly invertible linear mapping U × P → V ′ × Q′ if and only if the following three conditions are satisfied:

(i) for all f ∈ (kerB)′, there exists a unique u ∈ kerC such that a(u, v) = f(v) (v ∈ kerB),
(ii) for all g ∈ Q′, there exists some u ∈ U such that c(u, q) = g(q) (q ∈ Q),
(iii) for all f ∈ (kerB)0, there exists a unique p ∈ P such that b(p, v) = f(v) (v ∈ V ).

Proof. Suppose (i)–(iii) are satisfied, and let f ∈ V ′, g ∈ Q′. By condition (ii), there exists a ū ∈ U with
c(ū, q) = g(q) (q ∈ Q). Condition (i) shows that there exists a u0 ∈ kerC with a(u0, v) = f(v) − a(ū, v)
(v ∈ kerB). So u := u0 + ū solves

a(u, v) + c(u, q) = f(v) + g(q) (v ∈ kerB, q ∈ Q).

This u is unique. Indeed, let u1, u2 ∈ U be two solutions, then

a(u1 − u2, v) = c(u2 − u2, q) (v ∈ kerB, q ∈ Q).

By taking v = 0, we find u2 − u1 ∈ kerC. Now by taking q = 0, we infer that u1 = u2 by (i). Finally,
condition (iii) shows that there exists a unique p ∈ P that solves

b(p, v) = f(v) − a(u, v) (v ∈ V, q ∈ Q), (2.2)

so that (2.1) has a unique solution (u, p) ∈ U ×P . An application of the open mapping theorem shows that (2.1)
defines boundedly invertible linear mapping U × P → V ′ × Q′.

Conversely, let (2.1) define a boundedly invertible linear mapping. Then condition (ii) follows easily. From[
A B′
C 0

]
: U ×P → V ′×Q′ being boundedly invertible, we have that ranB′×{0} =

[
A B′
C 0

]∣∣∣∣
{0}×P

is closed, and

thus that ranB′ is closed. By an application of the closed range theorem, we conclude that (kerB)0 = ranB′,
which is (iii). Now let f ∈ (kerB)′. By an application of Hahn−Banach’s theorem extend it to f ∈ V ′, and
take g = 0. Then for the solution (u, p) of (2.1), it holds that u ∈ kerC, and a(u, v) = f(v) (v ∈ kerB). Now
suppose that the last problem has two solutions u1, u2 ∈ kerC. For i = 1, 2, define pi ∈ P as the solution of
b(p, v) = f(v) − a(ui, v) (v ∈ V ). Then both (u1, p1) and (u2, p2) solve (2.1), and we conclude u1 = u2, which
completes the proof of (i). �

Proposition 2.2. Having bounded b and c, conditions equivalent to (ii) and (iii) are, respectively,

(ii)′ inf0�=q∈Q sup0�=u∈U
c(u,q)

‖q‖Q‖u‖U
> 0,

(iii)′ inf0�=p∈P sup0�=v∈V
b(p,v)

‖p‖P ‖v‖V
> 0.

Proof. The equivalence of (ii) and (ii)′ follows from the equivalence of (a) and (e) in Lemma 2.3 stated below.
Another application of Lemma 2.3 shows that (iii)′ implies that B′ ∈ L(P, V ′) is a homeomorphism onto (kerB)0,
which implies (iii). Conversely, since ranB′ ⊂ (kerB)0 by definition, (iii) implies that (kerB)0 = ranB′ and
that B′ is injective, and so, by Lemma 2.3, that (iii)′ is valid. �
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Lemma 2.3. For reflexive Banach spaces X and Y , and for T ∈ L(X, Y ′), the following statements are
equivalent:

(a) inf0�=y∈Y sup0�=x∈X
(Tx)(y)

‖x‖X‖y‖Y
> 0,

(b) T ′ ∈ L(Y, X ′) is a homeomorphism onto its range,
(c) T ′ injective and ranT ′ is closed,
(d) T ′ injective and ranT ′ = (kerT )0,
(e) T is surjective.

Proof. (a)⇔(b) and (b)⇒(c) follow easily.
(c)⇒(b) is a consequence of the open mapping theorem.
(c)⇔(d) follows from the closed range theorem.
(e)⇒(c): Since ranT is closed, the closed range theorem shows that ranT ′ is closed, and that (kerT ′)0 =

ranT = Y ′, so that, by an application of the Hahn−Banach theorem, kerT ′ = ∅.
(c)⇒(e): Since ranT ′ is closed, the closed range theorem shows that ranT = (kerT ′)0 = Y ′ because T ′ is

injective. �

In the following, we shall the above existence results to verify the well-posedness of space-time variational
saddle-point formulations of the Navier−Stokes equations. All the ensuing developments will require the pre-
ceding results in the particular setting of Hilbert spaces.

3. The instationary Stokes problem with free-slip boundary conditions,

as a well-posed operator equation

Let Ω ⊂ R
n be a bounded Lipschitz domain. Given vector fields f̃ on (0, T )×Ω and u0 on Ω, and functions g

on (0, T )×Ω, and gi (1 ≤ i ≤ n−1) on (0, T )×∂Ω, we consider the instationary inhomogeneous Stokes problem
with free-slip boundary conditions of finding for some ν > 0 a velocity field u and corresponding pressure p that
satisfy ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t

− νΔxu + ∇x p = f̃ on (0, T ) × Ω,

divx u = g on (0, T ) × Ω,
u · n = 0 on (0, T ) × ∂Ω,

∂u
∂n · τ i = gi on (0, T ) × ∂Ω, 1 ≤ i ≤ n − 1,
u(0, ·) = u0 on Ω,

(3.1)

where τ 1, . . . , τn−1 is an orthonormal set of tangent vectors.
Integrating the first equation against smooth vector fields v, that as function of x have vanishing normals at

∂Ω, and that as function of t vanish at t = T , and by applying integration by parts in space and time, and by
integrating the second equation against smooth functions q, we arrive at a variational problem of the form (2.1),
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(u,v)=−
∫ T

0

∫
Ω

u · ∂v
∂t dxdt +

∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt,

b(p,v)=−
∫ T

0

∫
Ω

p div v dxdt,

c(u, q)=
∫ T

0

∫
Ω

q div u dxdt,

f(v)=
∫ T

0

∫
Ω

f̃ · v dxdt +
∫ T

0

∫
∂Ω

n−1∑
i=1

(v · τ i)gidxdt +
∫

Ω

u0 · v(0, ·) dx,

g(q)=
∫ T

0

∫
Ω

g q dxdt.

(3.2)
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We will need the following assumption on the domain Ω concerning H2-regularity of the Poisson problem
with homogeneous Neumann boundary conditions.

Assumption 3.1. The bounded Lipschitz domain Ω ⊂ R
n is such that for any h ∈ L2,0(Ω) := L2(Ω)/R, the

solution u ∈ H1(Ω)/R of ∫
Ω

∇u · ∇v dx =
∫

Ω

hv dx (v ∈ H1(Ω)/R),

is in H2(Ω), with ‖u‖H2(Ω) � ‖h‖L2(Ω).

This assumption is known to be satisfied when Ω is convex, or when it has a C2-boundary.

Theorem 3.2. With the spaces H̃2(Ω) := {p ∈ H2(Ω) : ∂p
∂n = 0 on ∂Ω}/R, H1(Ω) := {w ∈ H1(Ω)n : w · n =

0 on ∂Ω} and

U := L2(0, T ;H1(Ω)),

P :=
(
L2(0, T ; L2,0(Ω)) ∩ H1

0,{T}
(
0, T ; H̃2(Ω)′

))′
,

V := L2(0, T ;H1(Ω)) ∩ H1
0,{T}(0, T ;H1(Ω)′),

Q := L2(0, T ; L2,0(Ω)),

and under Assumption 3.1, the mapping L : (u, p) �→ (f , g) as in (2.1) with bilinear forms from (3.2) defines a
boundedly invertible linear mapping U × P → V′ × Q′.

(Here and in what follows, we denote for a Banach space B and a summability index 1 ≤ p < ∞ by Lp(0, T ; B)
the space of strongly measurable functions u : (0, T ) �→ B such that (0, T ) � t �→ ‖u(t)‖B ∈ Lp(0, T ). As usual,
dual spaces should be interpreted with respect to the identifications L2(Ω)′ � L2(Ω), L2,0(Ω)′ � L2,0(Ω), or
L2(0, T ; L2,0(Ω))′ � L2(0, T ; L2,0(Ω)), respectively. For Γ ⊂ {0, T }, H1

0,Γ (0, T ) denotes the closure in H1(0, T )
of the set of w ∈ C∞(0, T ) ∩ H1(0, T ) with suppw ∩ Γ = ∅.)

To prove this theorem, in the following, we will verify the conditions of the abstract existence and uniqueness
result, Theorem 2.1.

The bilinear forms a : U × V → R, b : P × V → R, and c : U × Q → R are bounded. For b, this follows
from div ∈ L(H1(Ω), L2,0(Ω)) and div ∈ L(H1(Ω)′, H̃2(Ω)′), the latter, because of the density of D(Ω) in
H1(Ω)′, being equivalent to ∇ ∈ L(H̃2(Ω),H1(Ω)). We conclude that I ⊗ divx ∈ L(V, P ′), being equivalent to
b : V × P → R is bounded.

Knowing the boundedness of a, b, and c, next we verify the conditions (i)–(iii) of Theorem 2.1. We start
with condition (ii). For u ∈ U, q ∈ Q, one has c(u, q) = − ∫ T

0

∫
Ω
∇xq · u dxdt. Since Ω is a bounded Lipschitz

domain,
∇ ∈ L(L2,0(Ω), (H1

0 (Ω)n)′) is a homeomorphism onto its range (3.3)

([14], cf. [23], Chap. 1, Rem. 1.4(ii)). By an application of Lemma 2.3, this means that

inf0�=q∈L2,0(Ω)sup0�=u∈H1
0(Ω)n

∫
Ω

q div udx
‖q‖L2,0(Ω)‖u‖H1(Ω)n

> 0,

and so also that

inf0�=q∈L2,0(Ω)sup0�=u∈H1(Ω)

∫
Ω

q div u dx
‖q‖L2,0(Ω)‖u‖H1(Ω)n

> 0.

Since, additionally, (u, q) �→ ∫
Ω

q div u dx is bounded on H1(Ω)×L2,0(Ω), one has that ∇ ∈ L(L2,0(Ω),H1(Ω)′),
and so I ⊗∇x ∈ L(Q,U′) are homeomorphisms onto their ranges by Lemma 2.3. Knowing the boundedness of
c : U× Q → R, the latter is equivalent to condition (ii) of Theorem 2.1.
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To show condition (i) of Theorem 2.1, we give a characterization of the kernels of

B := I ⊗ div ∈ L(V, P ′), C := I ⊗ div ∈ L(U, Q′).

We set

H1(Ω) := {u ∈ H1(Ω) : div u = 0}, H0(Ω) := closL2(Ω)n H1(Ω), H−1(Ω) := H1(Ω)′

(to be interpreted with respect to the identification H0(Ω)′ � H0(Ω)).
Since div H1(Ω) ⊂ L2,0(Ω), it holds that

kerC = L2(0, T ; H1(Ω)). (3.4)

Lemma 3.3. With H̃−1
(Ω) := closH1(Ω)′ H1(Ω), it holds that

kerB = L2(0, T ; H1(Ω)) ∩ H1
0,{T}(0, T ; H̃−1

(Ω)).

Proof. Since both L2(0, T ; L2,0(Ω)) and H1
0,{T}

(
0, T ; H̃2(Ω)′) are continuously embedded in, e.g.,

L2(0, T ; H̃2(Ω)′), these two spaces form a so-called Banach couple, also known as a compatible couple of Banach
spaces. Since moreover their intersection is dense in both spaces, the dual of their intersection is isomorphic to
the sum of their duals, see e.g. ([12], Chap. 1, Thm. 3.1), i.e.,

P =
(
L2(0, T ; L2,0(Ω)) ∩ H1

0,{T}
(
0, T ; H̃2(Ω)′

))′ � L2(0, T ; L2,0(Ω)) + H1
0,{T}

(
0, T ; H̃2(Ω)′

)′
.

So v ∈ kerB if and only if v ∈ L2(0, T ;H1(Ω)) ∩ H1
0,{T}(0, T ;H1(Ω)′) and (Bv)(p) = 0 for all p ∈

L2(0, T ; L2,0(Ω)) + H1
0,{T}

(
0, T ; H̃2(Ω)′

)′. This is equivalent to v ∈ L2(0, T ;H1(Ω)) and ((I ⊗ div)v)(p) = 0
for all p ∈ L2(0, T ; L2,0(Ω)), i.e., v ∈ L2(0, T ; H1(Ω)) by (3.4), together with v ∈ H1

0,{T}(0, T ;H1(Ω)′) and

((I ⊗ div)v)(p) = 0 for all p ∈ H1
0,{T}

(
0, T ; H̃2(Ω)′

)′. The second condition means that with N := ker(div ∈
L(H1(Ω)′, H̃2(Ω)′)), it holds that v ∈ H1

0,{T}(0, T ; N ), so what is left to show is that N = H̃−1
(Ω).

By div ∈ L(H1(Ω)′, H̃2(Ω)′), N contains H̃−1
(Ω). To prove that N ⊂ H̃−1

(Ω), it suffices to show the
reversed inclusion for their polar sets

{u ∈ H1(Ω) : 〈u,w〉L2(Ω) = 0, w ∈ N} ⊃ {u ∈ H1(Ω) : 〈u,w〉L2(Ω) = 0, w ∈ H̃−1
(Ω)}. (3.5)

The set on the right is contained in {u∈H1(Ω) :〈u,w〉L2(Ω) =0, w ∈ D(Ω), div w = 0}. As shown by De Rham
([7], cf. [23], Chap. 1, Prop. 1.1), a distribution u that vanishes on all divergence-free test functions is a gradient
of another distribution. If, additionally u ∈ H1(Ω), then necessarily u ∈ ∇H̃2(Ω).

The adjoint of div ∈ L(H1(Ω)′, H̃2(Ω)′) is −∇ ∈ L(H̃2(Ω),H1(Ω)). The latter operator is bounded, and so
closed, and it is an homeomorphism with its image, so which in particular is closed. The closed range theorem
now implies that the space on the left in (3.5) is equal to ∇H̃2(Ω). This completes the proof. �

Next, we show that, under conditions, the space H̃−1
(Ω) in the characterization of kerB can be replaced by

H−1(Ω).

Lemma 3.4. If the L2(Ω)n-orthogonal projector onto H0(Ω) is bounded on H1(Ω), then H̃−1
(Ω) = H−1(Ω).
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Proof. As shown in, e.g., ([23], Chapt. 1, Thm. 1.4), the closure of the set of divergence-free test functions in
L2(Ω)n is {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω}, and so this space is contained in H0(Ω). On the other
hand, if for (uk)k ⊂ H1(Ω), uk → u in L2(Ω)n, and so in D(Ω)′, then div u = 0, and so uk → u in H(div;Ω),
in particular meaning that u · n = limk→∞ uk · n = 0 on ∂Ω. We conclude that

H0(Ω) = {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω}.

Let Π denote the L2(Ω)n-orthogonal projector onto H0(Ω). From H1(Ω) ⊂ H0(Ω) ∩ H1(Ω), we have
H1(Ω) ⊂ im Π |H1(Ω). On the other hand, if Π is bounded on H1(Ω), then imΠ |H1(Ω) ⊂ H0(Ω) ∩ H1(Ω) =
{u ∈ H1(Ω) : div u = 0} = H1(Ω), i.e.,

H1(Ω) = im Π |H1(Ω) . (3.6)

If, for some (fn)n ⊂ H1(Ω), fn → f in H1(Ω)′, then, viewed as functionals on H1(Ω), fn → f in H−1(Ω), i.e.,
H̃−1

(Ω) ⊂ H−1(Ω).
Conversely, let f ∈ H−1(Ω). Then there exists a (fn)n ⊂ H1(Ω) with fn → f in H−1(Ω). For any u ∈ H1(Ω),

fn((I −Π)u) = 〈fn, (I −Π)u〉L2(Ω)n = 〈(I −Π)fn,u〉L2(Ω)n = 0. So, after trivially extending f to a functional
on H1(Ω) by means of f(im(I−Π)) = 0, by the boundedness of Π on H1(Ω) and (3.6) we have ‖f−fn‖H1(Ω)′ =

sup0�=u∈H1(Ω)
|(f−fn)(Πu)|
‖u‖H1(Ω)n

� sup0�=u∈H1(Ω)
|(f−fn)(Πu)|
‖Πu‖H1(Ω)n

= ‖f − fn‖H−1(Ω), or H−1(Ω) ⊂ H̃−1
(Ω). �

Theorem 3.5. Under Assumption 3.1, we have H̃−1
(Ω) = H−1(Ω).

Proof. As shown in, e.g., ([23], Chap. 1, Thm. 1.4), one has the following Helmholtz decomposition

L2(Ω)n = H0(Ω) ⊕⊥ ∇(H1(Ω)/R). (3.7)

The L2(Ω)n-orthogonal projector Π onto H0(Ω) is known as the Leray projector. Given u ∈ L2(Ω)n, ∇z =
(I − Π)u is the solution of 〈u −∇z,∇w〉L2(Ω)n = 0 (w ∈ H1(Ω)/R).

When u ∈ H1(Ω), this z solves the Poisson problem with Neumann boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

−Δz =div u on Ω,

∂z

∂n
=0 on ∂Ω,∫

Ω
zdx=0.

Under Assumption 3.1, this Poisson problem is H2(Ω)-regular, and so

‖∇z‖H1(Ω)n � ‖z‖H2(Ω) � ‖div u‖L2(Ω)n � ‖u‖H1(Ω)n ,

i.e., I − Π and thus Π is bounded on H1(Ω). Now the result follows from Lemma 3.4. �

Using that on H1(Ω) ×H1(Ω), (w,v) �→ ∫
Ω

ν∇w : ∇v dx is bounded and satisfies a G̊arding inequality, we
have the following result about the well-posedness of the variational formulation of the parabolic problem that
results from the reduction of the instationary Stokes problem, with the homogeneous constraint divxu = 0, to
a system of equations for the divergence-free velocities only:

Theorem 3.6. With

X := L2(0, T ; H1(Ω)), Y := L2(0, T ; H1(Ω)) ∩ H1
0,{T}(0, T ; H−1(Ω)),

A := u �→ (v �→ a(u,v)) is a boundedly invertible linear mapping from X to Y ′.
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Proof. The statement is equivalent to A′ being boundedly invertible from Y to X ′, which in turn, by making
the change of variable T − t to t, is equivalent to the statement that

u �→
(

v �→
∫ T

0

∫
Ω

∂u
∂t

· v dxdt +
∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt

)
,

from L2(0, T ; H1(Ω)) ∩ H1
0,{0}(0, T ; H−1(Ω)) to L2(0, T ; H−1(Ω)) is boundedly invertible. The boundedness

of this mapping follows easily. The mapping corresponds to a variational formulation of a parabolic problem
with homogeneous initial datum in the space of divergence-free velocities. The boundedness of the inverse is
a consequence of (u,v) �→ ∫

Ω ν∇xu : ∇xv dx being bounded and coercive on H1(Ω) × H1(Ω), and it is
shown, e.g., as a special case of ([18], Thm. 4.1), where a possible inhomogeneous initial condition is imposed
weakly. �

The characterizations of the kernels given by (3.4), Lemma 3.3, and Theorem 3.5, together with Theorem 3.6
imply condition (i) of Theorem 2.1.

Condition (iii) of Theorem 2.1 is equivalent to (iii)′ which, by Lemma 2.3, is equivalent to

B = I ⊗ divx : L
(
L2(0, T ;H1(Ω)) ∩ H1

0,{T}(0, T ;H1(Ω)′),

L2(0, T ; L2,0(Ω)) ∩ H1
0,{T}(0, T ; H̃2(Ω)′)

)
is surjective. (3.8)

Note that since I ⊗ divx is not injective, to prove (3.8) it is generally not sufficient to show that
I ⊗ divx is surjective both as mapping in L(L2(0, T ;H1(Ω)), L2(0, T ; L2,0(Ω))) and as mapping in
L(H1

0,{T}(0, T ;H1(Ω)′), H1
0,{T}(0, T ; H̃2(Ω)′)).

Below, we will construct a mapping div+ with div ◦ div+ = I, such that

div+ ∈ L(L2,0(Ω),H1(Ω)), div+ ∈ L(H̃2(Ω)′,H1(Ω)′). (3.9)

Since, consequently, I ⊗ div+
x is a right-inverse for the mapping from (3.8), this will imply the surjectivity of

the latter mapping.
We define div+ : g �→ u by ⎧⎨

⎩
u + ∇p = f on Ω,

div u = g on Ω,
u · n = 0 on ∂Ω,

where f = 0, or, more precisely, by its variational formulation to find (u, p) ∈ L2(Ω)n × H1(Ω)/R such that∫
Ω

u · v +
∫

Ω

∇p · v +
∫

Ω

∇q · u = f(v) + g(q) ((v, q) ∈ L2(Ω)n × H1(Ω)/R). (3.10)

From the fact that ∇ ∈ L(H1(Ω)/R, L2(Ω)n) is a homeomorphism onto its range, applications of Lemma 2.3,
Proposition 2.2, and Theorem 2.1 confirm the well-known fact that this variational problem, for general f ∈
L2(Ω)n, defines a boundedly invertible operator from L2(Ω)n × H1(Ω)/R to its dual.

Under Assumption 3.1, for f ∈ H1(Ω) and g ∈ L2,0(Ω), the solution p of{−Δp = g − div f on Ω,
∂p

∂n
= 0 on ∂Ω,

is in H̃2(Ω), and u := f − ∇p ∈ H1(Ω). We infer that the mapping (f , g) �→ (u, p) defined by (3.10) is in
L(H1(Ω) × L2,0(Ω),H1(Ω) × H̃2(Ω)), and so, by considering the adjoint and using the symmetry of the left-
hand side of (3.10) in (u, p) and (v, q), it is in L(H1(Ω)′ × H̃2(Ω)′,H1(Ω)′ × L2,0(Ω)). We conclude that (3.9)
and thus condition (iii) of Theorem 2.1 are valid.
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Having verified all conditions of Theorem 2.1, the proof of Theo-
rem 3.2 is now completed.

Finally in this section, we derive well-posedness of an alternative variational formulation. The variational
formulation (3.2) of our Stokes problem (3.1) was derived by applying integration by parts over time. This has
the advantage that the initial condition u(0, ·) = u0 enters the variational formulation as a natural boundary
condition, i.e., in the right-hand side. In any case for a homogeneous initial condition, i.e., u(0, ·) = 0, an
alternative variational formulation is obtained by not applying integration by parts over time. It reads as a
variational formulation of the form (2.1), where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(u,v)=
∫ T

0

∫
Ω

∂u
∂t

· v dxdt +
∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt,

b(p,v)=−
∫ T

0

∫
Ω

p div v dxdt,

c(u, q)=
∫ T

0

∫
Ω

q div u dxdt,

f(v)=
∫ T

0

∫
Ω

f̃ · v dxdt +
∫ T

0

∫
∂Ω

n−1∑
i=1

(v · τ i)gidxdt

g(q)=
∫ T

0

∫
Ω

g q dxdt.

(3.11)

Theorem 3.7. With

U := L2(0, T ;H1(Ω)) ∩ H1
0,{0}(0, T ;H1(Ω)′),

P := L2(0, T ; L2,0(Ω)),
V := L2(0, T ;H1(Ω)),

Q :=
(
L2(0, T ; L2,0(Ω)) ∩ H1

0,{0}
(
0, T ; H̃2(Ω)′

))′
,

and under Assumption 3.1, the mapping L : (u, p) �→ (f , g) as in (2.1) with bilinear forms from (3.11) defines
a boundedly invertible linear mapping U × P → V′ × Q′.

Proof. Denoting the spaces U, V, P , and Q, and operator L from Theorem 3.2 here as Ū, V̄, P̄ , Q̄, and L̄,
and defining (Rw)(t, x) = w(T − t, x), we have

(L(u, p))(v, q) = (L̄(Rv,−Rq))(Ru,−Rp) = (L̄′(Ru,−Rp))(Rv,−Rq).

From L̄′ ∈ L(V̄ × Q̄, Ū′ × P̄ ′) being a boundedly invertible, and RU = V̄, RP = Q̄, RV = Ū, and RQ = P̄ ,
the proof is completed. �

4. The instationary Stokes problem, with no-slip boundary conditions,

as a well-posed operator equation

Let Ω ⊂ R
n be a bounded Lipschitz domain. Given vector fields f̃ on (0, T )×Ω and u0 on Ω, and a function

g on (0, T ) × Ω, we consider the instationary inhomogeneous Stokes problem with no-slip boundary conditions
to find the velocities u and pressure p that satisfy⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t

− νΔxu + ∇x p = f̃ on (0, T )× Ω,

divx u = g on (0, T )× Ω,
u = 0 on (0, T )× ∂Ω,

u(0, ·) = u0 on Ω.
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By integrating the first equation against smooth vector fields v, that as function of x vanish at ∂Ω, and that
as function of t vanish at t = T , and by applying integration by parts in space and time, and by integrating the
second equation against smooth functions q, and by applying integration by parts, we arrive at a variational
problem of the form (2.1), where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(u,v)=−
∫ T

0

∫
Ω

u · ∂v
∂t

dxdt +
∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt,

b(p,v)=
∫ T

0

∫
Ω

v · ∇p dxdt,

c(u, q)=−
∫ T

0

∫
Ω

u · ∇q dxdt,

f(v)=
∫ T

0

∫
Ω

f̃ · v dxdt +
∫

Ω

u0 · v(0, ·) dx,

g(q)=
∫ T

0

∫
Ω

g q dxdt.

(4.1)

Remark 4.1. With Ĥ2(Ω) := {p ∈ H2(Ω) : ∇p = 0 on ∂Ω}/R, following the exposition in Section 3, an
obvious choice for the spaces U, P and V, Q for the variables u, p and v, q, would be

L2(0, T ; H1
0 (Ω)n),

(
L2(0, T ; L2,0(Ω)) ∩ H1

0,{T}
(
0, T ; Ĥ2(Ω)′

))′
,

L2(0, T ; H1
0 (Ω)n) ∩ H1

0,{T}(0, T ; H−1(Ω)n), L2(0, T ; L2,0(Ω)),

where H−1(Ω) = H1
0 (Ω)′ with respect to the identification L2(Ω)′ � L2(Ω). With this choice, the resulting

space H1(Ω) of divergence free spatial functions would read as {u ∈ H1
0 (Ω)n : div u = 0}, with, as in Section 3,

its closure H0(Ω) in L2(Ω)n being {u ∈ L2(Ω)n : div u = 0, u ·n = 0 on ∂Ω}. Now when following the analysis
from Section 3, the problem is that the L2(Ω)n-orthogonal projector onto H0(Ω), i.e., the Leray projector,
does not preserve no-slip boundary conditions, and therefore is not bounded on H1

0 (Ω)n.

In view of Remark 4.1, later, in Theorem 4.3, we will select trial- and test-spaces by making a shift in
smoothness indices for the spatial variables.

Before that, first we study the stationary Stokes problem with homogeneous Dirichlet boundary conditions
of finding u ∈ H1

0 (Ω)n, p ∈ L2,0(Ω) such that, for given f ∈ H−1(Ω)n, g ∈ L2,0(Ω),∫
Ω

ν∇u : ∇v dx −
∫

Ω

p div v dx +
∫

Ω

q div u dx = f(v) + g(q) ((v, q) ∈ H1
0 (Ω)n × L2,0(Ω)). (4.2)

Since, using that Ω is a bounded Lipschitz domain, ∇ ∈ L(L2,0(Ω), H−1(Ω)n) is homeomorphism onto its
range, see (3.3), applications of Lemma 2.3, Proposition 2.2, and Theorem 2.1 confirm the well-known fact that
this variational problem defines a boundedly invertible mapping between H1

0 (Ω)n × L2,0(Ω) and its dual.
We will need the following assumption on the domain Ω about H2(Ω)n ×H1(Ω)-regularity of this stationary

Stokes problem.

Assumption 4.2. The bounded Lipschitz domain Ω ⊂ R
n is such that for any f ∈ L2(Ω)n, g ∈ H1(Ω)/R, the

solution (u, p) of (4.2) belongs to H2(Ω)n × H1(Ω) and ‖u‖H2(Ω)n + ‖p‖H1(Ω) � ‖f‖L2(Ω)n + ‖g‖H1(Ω).

This assumption is known to be satisfied for domains Ω in R
2 or R

3 that either have a C2-boundary, or that
are convex with a piecewise smooth boundary. See [5, 11] for the two- or three-dimensional case, respectively.
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Theorem 4.3. With

U := L2(0, T ; L2(Ω)n),

P :=
(
L2(0, T ; H1(Ω)/R) ∩ H1

0,{T}
(
0, T ; (H1(Ω)/R)′

))′
,

V := L2(0, T ; (H1
0 (Ω) ∩ H2(Ω))n) ∩ H1

0,{T}(0, T ; L2(Ω)n),

Q := L2(0, T ; H1(Ω)/R),

and under Assumption 4.2, the mapping L : (u, p) �→ (f , g) as in (2.1) with bilinear forms from (4.1) defines a
boundedly invertible linear mapping U × P → V′ × Q′.

(Here, dual spaces should be interpreted with respect to the identifications L2,0(Ω)′ � L2,0(Ω), or
L2(0, T ; L2,0(Ω))′ � L2(0, T ; L2,0(Ω)), respectively.)

Before proving this theorem, we give some more auxiliary results dealing with the stationary problem.

Lemma 4.4. It holds that

ker(∇′ ∈ L(L2(Ω)n, (H1(Ω)/R)′)) = {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω} := H̆0
(Ω),

ker(∇′ ∈ L(H1
0 (Ω), L2,0(Ω))) = {u ∈ H1

0 (Ω)n : div u = 0} := H̆1
(Ω),

ker(∇′ ∈ L((H2(Ω) ∩ H1
0 (Ω)1)n, H1(Ω)/R)) = {u ∈ (H2(Ω) ∩ H1

0 (Ω))n : div u = 0} := H̆2
(Ω).

Proof. Since in the last two cases ∇ = −div′ by definition, we only have to verify the first statement, i.e., that

N := ker(∇′ ∈ L(L2(Ω)n, (H1(Ω)/R)′)) = H̆0
(Ω).

For u ∈ H̆0
(Ω), p ∈ H1(Ω)/R, one has

∫
Ω ∇p ·u dx = 0, i.e., H̆0

(Ω) ⊂ N . To prove the reversed inclusion, we
have to show that

{u ∈ L2(Ω)n : 〈u,w〉L2(Ω) = 0, w ∈ N} ⊃
{
u ∈ L2(Ω)n : 〈u,w〉L2(Ω) = 0, w ∈ H̆0

(Ω)
}

. (4.3)

The set on the right is part of {u∈L2(Ω)n: 〈u,w〉L2(Ω) =0, w ∈ D(Ω), div w=0}. As shown by De Rham ([7],
cf. [23], Chap. 1, Prop. 1.1), a distribution u that vanishes on all divergence-free test functions is a gradient of
another distribution. If, additionally u ∈ L2(Ω)n, then necessarily u ∈ ∇(H1(Ω)/R).

Since ∇ : H1(Ω)/R → L2(Ω)n) is bounded, and so is closed, and moreover since this mapping is an homeo-
morphism with its image, which is therefore closed, the closed range theorem tells us that the space on the left
in (4.3) is equal to ∇(H1(Ω)/R), which completes the proof. �

It holds that H̆2
(Ω) ↪→ H̆1

(Ω) ↪→ H̆0
(Ω) with dense embeddings. For i ∈ {1, 2}, we set H̆−i

(Ω) := (H̆i
(Ω))′,

where this dual space should be interpreted with respect to the identification (H̆0
(Ω))′ � H̆0

(Ω).
The stationary Stokes problem (4.2) with g = 0 can be reduced to a problem involving divergence-free

velocities only. It reads as finding u ∈ H̆1
(Ω) that solves∫

Ω

ν∇u : ∇v dx = f(v)
(
v ∈ H̆1

(Ω)
)

. (4.4)

Under Assumption 4.2, for f ∈ L2(Ω)n we have u ∈ H̆2
(Ω) with

‖u‖H2(Ω)n � ‖f‖L2(Ω)n . (4.5)
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After these preparations dealing with the stationary Stokes problem, we are ready to prove Theorem 4.3 by
verifying the conditions of Theorem 2.1.

Recalling the definitions of the spaces U, P , V, and Q given in Theorem 4.3, similarly as in Section 3 one
shows that the bilinear forms a : U × V → R, b : P × V → R, and c : U × Q → R are bounded.

With
B := I ⊗∇′ ∈ L(V, P ′), C := I ⊗∇′ ∈ L(U, Q′),

the operator C′ ∈ L(Q,U′) is a homeomorphism onto its range, which by Lemma 2.3 shows condition (ii) of
Theorem 2.1.

As a second step, we verify Condition (i). As an easy consequence of Lemma 4.4, we have

kerC = L2(0, T ; H̆0
(Ω)). (4.6)

Similarly as in the proof of Lemma 3.3, we have

P � L2(0, T ; H1(Ω)/R)′ + H1
0,{T}

(
0, T ; (H1(Ω)/R)′

)′
,

and consequently that

kerB = ker(I ⊗∇′ ∈ L(L2(0, T ; (H1
0 (Ω) ∩ H2(Ω))n), L2(0, T ; H1(Ω)/R))

∩ ker(I ⊗∇′ ∈ L(H1
0,{T}(0, T ; L2(Ω)n), H1

0,{T}
(
0, T ; (H1(Ω)/R)′

)
= L2(0, T ; H̆2

(Ω)) ∩ H1
0,{T}(0, T ; H̆0

(Ω)) (4.7)

by an application of Lemma 4.4.

Theorem 4.5. With

X 1 := L2(0, T ; H̆0
(Ω)), Y1 := L2(0, T ; H̆2

(Ω)) ∩ H1
0,{T}(0, T ; H̆0

(Ω)),

under Assumption 4.2, A : u �→ (v �→ a(u,v)) defines a boundedly invertible linear mapping from X 1 to Y ′
1.

Proof. We follow [21], proof of Theorem 4.2. The boundedness of A follows easily.
The boundedness of A−1 is equivalent to (A′)−1 ∈ L(X ′

1, Y1). To demonstrate the latter, we have to show
that for any f ∈ X 1 � X ′

1, the variational problem of finding z such that

∫ T

0

∫
Ω

−w · ∂z
∂t

dxdt +
∫ T

0

∫
Ω

ν∇w : ∇zdxdt =
∫ T

0

∫
Ω

f ·w dxdt (w ∈ X 1), (4.8)

has a unique solution z ∈ Y1 with ‖z‖Y1 � ‖f‖X1 .
Although this result may follow from the theory of analytic semigroups, we give a more elementary derivation.

With
X 0 := L2(0, T ; H̆1

(Ω)), Y0 := L2(0, T ; H̆1
(Ω)) ∩ H1

0,{T}
(
0, T ; H̆−1

)
,

similar to Theorem 3.6, we have that for f ∈ X ′
0 ⊃ X ′

1, (4.8), with test space X 0, has a unique solution z ∈ Y0.
Below, we will show that for a subspace of sufficiently smooth f , this solution is in Y1, and thus that (4.8) holds
for all w ∈ X 1, and moreover that ‖z‖Y1 � ‖f‖X1 . Since the subspace of these smooth f will be dense in X 1,
this will complete the proof.

Equation (4.8) is the variational formulation of the problem of finding, for t ∈ (0, T ), z(t, ·) ∈ H̆1
(Ω) that

satisfies {∫
Ω
−∂z

∂t
(t, ·) ·w dx +

∫
Ω

ν∇w : ∇z(t, ·) dx =
∫

Ω
f(t, ·) · w dx

(
w ∈ H̆1

(Ω)
)

,

z(T, ·) = 0.
(4.9)



888 R. GUBEROVIC ET AL.

Note that as function of t̃ = T − t, z satisfies a standard parabolic initial value problem. As shown in ([24],
Chap. IV, Sect. 27), if f ∈ H2(0, T ; H̆−1

(Ω)) with f(T, ·) ∈ H̆2
(Ω) and ∂f

∂t (T, ·) ∈ H̆0
(Ω), then its solution

z ∈ H2(0, T ; H̆1
(Ω)).

By substituting w = −∂z
∂t (t, ·) ∈ H̆1

(Ω) in (4.9), we obtain

∥∥∥∥∂z
∂t

(t, ·)
∥∥∥∥

2

L2(Ω)n

− 1
2

∂

∂t

∫
Ω

ν∇z(t, ·) : ∇z(t, ·) dx = −
∫

Ω

f(t, ·) · ∂z
∂t

(t, ·) dx.

By integrating this equality over time, applying z(T, ·) = 0 and Cauchy−Schwarz’ inequality, and by additionally
assuming that f ∈ L2(0, T ; H̆0

(Ω)), we arrive at

∫ T

0

‖∂z
∂t

(t, ·)‖2
L2(Ω)ndt ≤ 1

2

∫ T

0

‖f(t, ·)‖2
L2(Ω)ndt +

1
2

∫ T

0

‖∂z
∂t

(t, ·)‖2
L2(Ω)ndt,

or ∫ T

0

∥∥∥∥∥∂z
∂t

(t, ·)‖2
L2(Ω)ndt ≤

∫ T

0

‖f(t, ·)
∥∥∥∥∥

2

L2(Ω)n

dt. (4.10)

By additionally assuming that f(t, ·) ∈ H̆0
(Ω), from ∂z

∂t (t, ·) ∈ H̆1
(Ω) ⊂ H̆0

(Ω) and (4.5), the first equation

in (4.9) shows that z(t, ·) ∈ H̆2
(Ω) and ‖z(t, ·)‖H2(Ω)n � ‖f(t, ·)‖L2(Ω)n + ‖∂z

∂t (t, ·)‖L2(Ω)n . By integrating this
inequality over time and applying (4.10), we obtain that

‖z‖
L2(0,T ;H̆2

(Ω))
� ‖f‖L2(0,T ;L2(Ω)n) (4.11)

By combining (4.10) and (4.11), we have ‖z‖Y1 � ‖f‖X1 and the proof is completed. �

The characterizations of the kernels (4.6) and (4.7) together with Theorem 4.5 imply condition (i) of Theo-
rem 2.1.

Condition (iii) of Theorem 2.1 is equivalent to (iii)′, which by Lemma 2.3, is equivalent to

B = I ⊗ div ∈ L
(
L2(0, T ; (H1

0 (Ω) ∩ H2(Ω))n) ∩ H1
0,{T}(0, T ; L2(Ω)n),

L2(0, T ; H1(Ω)/R) ∩ H1
0,{T}

(
0, T ; (H1(Ω)/R)′

))
is surjective. (4.12)

Below, we will construct a mapping div+ with div ◦ div+ = I, such that

div+ ∈ L(H1(Ω)/R, (H1
0 (Ω) ∩ H2(Ω))n), div+ ∈ L((H1(Ω)/R)′, L2(Ω)n). (4.13)

Since, consequently, I⊗div+
x is a right-inverse for the mapping B defined in (4.12), this will imply the surjectivity

of the latter mapping.
We define div+ : g �→ u by the solution map of the stationary Stokes problem⎧⎨

⎩
−Δu + ∇p = 0 on Ω

div u = g on Ω
u = 0 on ∂Ω

or, more precisely, by its variational formulation which reads: Find (u, p) ∈ H1
0 (Ω)n × L2,0(Ω) such that∫

Ω

∇u : ∇v −
∫

Ω

p divv +
∫

Ω

q div u = g(q) ((v, q) ∈ H1
0 (Ω)n × L2,0(Ω)). (4.14)
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Since the bilinear form on the left hand side of (4.2) is symmetric in (u, p) and (v, q), under Assumption 4.2 the
mapping (f , g) �→ (u, p) defined by (4.14) is not only in L(L2(Ω)n ×H1(Ω)/R, (H1

0 (Ω)∩H2(Ω))n ×H1(Ω)/R),
but, by taking the adjoint, it is also in L((H−1(Ω) ∩ H2(Ω)′)n × (H1(Ω)/R)′, L2(Ω)n × (H1(Ω)/R)′). We
conclude (4.12) has been established, and thus that condition (iii) of Theorem 2.1 is valid.

Having verified all conditions of Theorem 2.1, the proof of Theo-
rem 4.3 is now completed.

Similar to Theorem 3.7 for the free-slip boundary conditions case, for the instationary Stokes problem with
no-slip boundary conditions and a homogeneous initial condition, a variational formulation of the form (2.1)
can be derived without applying integration by parts. The bilinear forms and right-hand side read as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(u,v)=
∫ T

0

∫
Ω

∂u
∂t

· v dxdt +
∫ T

0

∫
Ω

ν∇xu : ∇xv dxdt,

b(p,v)=
∫ T

0

∫
Ω

v · ∇p dxdt,

c(u, q)=−
∫ T

0

∫
Ω

u · ∇q dxdt,

f(v)=
∫ T

0

∫
Ω

f̃ · v dxdt,

g(q)=
∫ T

0

∫
Ω

g q dxdt.

(4.15)

and we have the following result:

Theorem 4.6. With

U := L2(0, T ; (H1
0 (Ω) ∩ H2(Ω))n) ∩ H1

0,{0}(0, T ; L2(Ω)n),

P := L2(0, T ; H1(Ω)/R),

V := L2(0, T ; L2(Ω)n),

Q :=
(
L2(0, T ; H1(Ω)/R) ∩ H1

0,{0}
(
0, T ; (H1(Ω)/R)′

))′
,

the mapping L : (u, p) �→ (f , g) as in (2.1) with bilinear forms from (4.15) defines a boundedly invertible linear
mapping U × P → V′ × Q′.

5. The instationary Navier−Stokes problem with homogeneous initial

condition

With the spaces U, P , V, Q from either Theorem 4.6 (no slip boundary conditions) and n ∈ {2, 3}, or those
from Theorem 3.7 (free-slip boundary conditions) and n = 2, we will show that any solution of the Navier-Stokes
problem is locally unique in U× P , and that for sufficiently small data (f , g) ∈ V′ ×Q′, such a solution exists.

Lemma 5.1. For Banach spaces X and Y , let B = L+N : X → Y ′ where L ∈ L(X, Y ′) is boundedly invertible,
and N(0) = 0.

For some R > 0 and α < ‖L−1‖−1
L(Y ′,X), let

‖N(x1) − N(x2)‖Y ′ ≤ α‖x1 − x2‖X (x1, x2 ∈ B(0; R) := {x ∈ X : ‖x‖X ≤ R}).
Then for any h ∈ Y ′ with ‖h‖Y ′ ≤ R(‖L−1‖−1

L(Y ′,X) − α), there exists a unique x ∈ B(0; R) with B(x) = h.

Proof. B(x) = h is equivalent to x = T (x) := L−1(h − N(x)). For ‖h‖Y ′ ≤ R(‖L−1‖−1
L(Y ′,X) − α) and x ∈

B(0; R), ‖T (x)‖X ≤ ‖L−1‖L(Y ′,X)(‖h‖Y + α‖x‖X) ≤ R, and, for x1, x2 ∈ B(0; R), ‖T (x1) − T (x2)‖X ≤
‖L−1‖L(Y ′,X)α‖x1 − x2‖. The proof is completed by an application of Banach’s fixed point theorem. �
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5.1. No-slip boundary conditions

For a domain Ω ⊂ R
n, a vector field f̃ on (0, T ) × Ω, and a function g on (0, T ) × Ω, we consider the

instationary Navier–Stokes problem to find the velocities u and pressure p that satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t

− νΔxu + u · ∇x u + ∇x p = f̃ on (0, T ) × Ω,

divx u = g on (0, T ) × Ω,
u = 0 on (0, T ) × ∂Ω,

u(0, ·) = 0 on Ω.

(5.1)

It gives rise to a variational problem of the form (2.1) with an extra trilinear term n(·, ·, ·), that reads as finding
u ∈ U, p ∈ P such that

a(u,v) + b(p,v) + c(u, q) = f(v) + g(q) − n(u,u,v) (v ∈ V, q ∈ Q), (5.2)

where the Hilbert spaces U, P , V, Q, right-hand side functionals f and g, and bilinear forms a, b, c are as in
Theorem 4.6 or (4.15), and

n(y, z,v) :=
∫ T

0

∫
Ω

y · ∇x z · v dxdt. (5.3)

Theorem 5.2. For n = 2, 3, let Ω ⊂ R
n be a bounded Lipschitz domain that satisfies Assumption 4.2. Then

for sufficiently small f ∈ V′ and g ∈ Q′, (5.2) has a unique solution (u, p) in some ball in U × P around the
origin.

Proof. By Theorem 4.6 and Lemma 5.1, it suffices to show that with N(u)(v) := n(u,u,v), it holds that
N : U → V′ with

‖N(u) − N(w)‖V′ ≤ ζ(‖u‖U, ‖w‖U)‖u− w‖U

for some ζ : [0,∞)2 → [0,∞) with ζ(α) → 0 if α → 0.
Recall that U = L2(0, T ; (H1

0(Ω)∩H2(Ω))n)∩H1
0,{0}(0, T ; L2(Ω)n) and V = L2(0, T ; L2(Ω)n). Using twice a

Hölder inequality, twice that H1(Ω) ↪→ L6(Ω) when n ≤ 3, see e.g. ([23], Chap. II, Sect. 1.1) here the existence
of an extension in L(H1(Ω), H1(Rn)) is used, which holds true because Ω is a Lipschitz domain, and also twice
that U ↪→ C([0, T ]; H1

0 (Ω)n) ([6], Chap. XVIII, Sect. 1.3) being a consequence of [L2(Ω), H1
0 (Ω)∩H2(Ω)]1/2 =

H1
0 (Ω) ([13], pp. 43, 64) for y, z ∈ U we find(

sup
0�=v∈V

|n(y, z,v)|
‖v‖V

)2

=
∫ T

0

‖y(t, ·) · ∇xz(t, ·)‖2
L2(Ω)n dt

=
∫ T

0

n∑
i=1

∫
Ω

|y · ∇xzi|2 dxdt ≤
n∑

i=1

∫ T

0

∫
Ω

|y|2|∇xzi|2 dxdt

≤
n∑

i=1

∫ T

0

‖y(t, ·)‖2
L6(Ω)n‖∇zi(t, ·)‖2

L3(Ω)n dt

≤ sup
t∈(0,T )

‖y(t, ·)‖2
L6(Ω)n

n∑
i=1

∫ T

0

(∫
Ω

|∇xzi| 32 |∇xzi| 32
) 2

3

dt

≤ sup
t∈(0,T )

‖y(t, ·)‖2
L6(Ω)n

n∑
i=1

∫ T

0

‖∇xzi(t, ·)‖L2(Ω)n‖∇xzi(t, ·)‖L6(Ω)ndt

� sup
t∈(0,T )

‖y(t, ·)‖2
H1(Ω)n sup

t∈(0,T )

‖z(t, ·)‖H1(Ω)n

√
T‖z‖L2(0,T ;H2(Ω)n) � ‖y‖2

U‖z‖2
U.

As a first consequence, we have ‖N(u)‖2
V′ � ‖u‖4

U, and so in particular, N : U → V′.
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Secondly, from n(u,u, ·) − n(w,w, ·) = n(u − w,u, ·) + n(w,u − w, ·), we find

‖N(u) − N(w)‖2
V′ � (‖u‖2

U + ‖w‖2
U)‖u− w‖2

U,

which completes the proof. �

Besides existence and local uniqueness for sufficiently small data, we also have local uniqueness of any solution:

Theorem 5.3. For n = 2, 3, let Ω ⊂ R
n be a bounded Lipschitz domain that satisfies Assumption 4.2. Let (u, p)

be a solution of (5.2), then for sufficiently small δf ∈ V′, δg ∈ Q′, (5.2) with (f , g) reading as (f + δf , g + δg)
has a unique solution in some ball in U × P around (u, p).

Proof. Writing the solution with perturbed data as (u + δu, p + δp), we find that (δu, δp) ∈ U × V solves

au(δu,v) + b(δp,v) + c(δu, q) = δf(v) + δg(q) − n(δu, δu,v) (v ∈ V, q ∈ Q),

where
au(δu,v) := a(δu,v) + n(u, δu,v) + n(δu,u,v).

The bilinear form au corresponds to the partial differential operator w �→ −νΔxw + u · ∇xw + w · ∇xu. Since
the perturbations are of lower order, any result that we have proven for the Stokes equations is also valid for the
modified Stokes equations with −νΔxw reading as −νΔxw + u · ∇xw + w · ∇xu (not uniformly in u though).
We conclude that the statement is proven similarly to Theorem 5.2. �

Remark 5.4. The point of the above proof is that with

B : U × P → V′ × Q′ : (u, p) �→ (
(v, q) �→ a(u,v) + b(p,v) + c(u, q) + n(u,u,v)

)
,

the Fréchet derivative

DB(u, p) : (δu, δp) �→ (
(v, q) �→ au(δu,v) + b(δp,v) + c(δu, q)

) ∈ L(U × P,V′ × Q′)

is boundedly invertible, which is a crucial property for any method for solving the Navier−Stokes equations.

5.2. Free-slip boundary conditions

For a domain Ω ⊂ R
n, a vector field f̃ on (0, T )× Ω, we consider the instationary Navier–Stokes problem to

find the velocities u and pressure p that satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− νΔxu + u · ∇x u + ∇x p = f̃ on (0, T ) × Ω,

divx u = 0 on (0, T ) × Ω,

u · n = 0 on (0, T ) × ∂Ω,

∂u
∂n

· τ i = gi on (0, T ) × ∂Ω, 1 ≤ i ≤ n − 1,

u(0, ·) = u0 on Ω,

(5.4)

where τ 1, . . . , τn−1 is an orthonormal set of tangent vectors.
It gives rise to a variational problem of the form (2.1) with an extra nonlinear term, that reads as finding

u ∈ U, p ∈ P such that

a(u,v) + b(p,v) + c(u, q) = f(v) + n(u,v,u) (v ∈ V, q ∈ Q), (5.5)

where the spaces U, P , V, Q, right-hand side functional f , and bilinear forms a, b, c are as in Theorem 3.7
or (3.11), and the form n is as in (5.3).



892 R. GUBEROVIC ET AL.

We arrived at this variational formulation with n(u,v,u), instead of the expected term −n(u,u,v), by using
that for smooth vector fields u on Ω that have vanishing normals at ∂Ω and that are divergence-free, and for
smooth vector fields v on Ω,

n(u,v,v) =
2∑

i,j=1

∫
Ω

ui(∂ivj)vj dx = 1
2

2∑
i,j=1

∫
Ω

ui∂iv
2
j dx = 1

2

[∑
j

∫
Ω

−div u v2
j dx +

∫
∂Ω

v2
j u · n ds

]
= 0

Expanding n(u,v+w,v+w) for smooth vector fields v,w on Ω, we arrive at n(u,v,w) = −n(u,w,v). Note
that it is essential that in (5.4) we have imposed u · n = 0 on (0, T ) × ∂Ω, instead of u · n = g on (0, T ) × ∂Ω
for some general function.

Theorem 5.5. Let Ω ⊂ R
2 be a bounded Lipschitz domain that satisfies Assumption 3.1. Then for sufficiently

small f ∈ V′, (5.5) has a unique solution (u, p) in some ball in U × P around the origin.

Proof. As shown in ([23], Chap. III, Sect. 3, Lem. 3.3), for v ∈ H1(R2) it holds that

‖v‖L4(R2) ≤ 21/4‖v‖ 1
2
L2(R2)|v|

1
2
H1(R2).

Since Ω ⊂ R
2 is a bounded Lipschitz domain, there exists an operator E that extends functions on Ω to

functions on R
2 with E ∈ L(L2(Ω), L2(R2)), E ∈ L(H1(Ω), H1(R2)) ([19], Chap. VI, Sect. 3, Thm. 5). We

conclude that for v ∈ H1(Ω),

‖v‖L4(Ω) ≤ ‖Ev‖L4(R2) ≤ 21/4‖Ev‖ 1
2
L2(R2)|Ev| 12H1(R2) � ‖v‖ 1

2
L2(Ω)‖v‖

1
2
H1(Ω).

Using this result, and by a few applications of Cauchy−Schwarz inequality, for y,v, z ∈ H1(Ω) we have

∣∣∣∣
∫

Ω

y · ∇xv · zdx
∣∣∣∣ =

∣∣∣∣∣∣
∫

Ω

2∑
i,j=1

yi(∂ivj)zj dx

∣∣∣∣∣∣ ≤
∑
i,j

‖∂ivj‖L2(Ω)‖yi‖L4(Ω)‖zj‖L4(Ω)

≤
√∑

i,j

‖∂ivj‖2
L2(Ω)

√∑
i

‖yi‖2
L4(Ω)

∑
j

‖zj‖2
L4(Ω)

� ‖v‖H1(Ω)2‖y‖
1
2
L2(Ω)2‖y‖

1
2
H1(Ω)2‖z‖

1
2
L2(Ω)2‖z‖

1
2
H1(Ω)2 .

Recalling that U = L2(0, T ;H1(Ω))∩H1
0,{0}(0, T ;H1(Ω)′) and V = L2(0, T ;H1(Ω)), for y, z ∈ U, v ∈ V, from

U ↪→ C([0, T ]; L2(Ω)2) we obtain

|n(y,v, z)| �
∫ T

0

‖v(t, ·)‖H1(Ω)2‖y(t, ·)‖ 1
2
L2(Ω)2‖y(t, ·)‖ 1

2
H1(Ω)2‖z(t, ·)‖

1
2
L2(Ω)2‖z(t, ·)‖

1
2
H1(Ω)2 dt

≤ sup
t∈[0,t]

‖y(t, ·)‖ 1
2
L2(Ω)2 sup

t∈[0,t]

‖z(t, ·)‖ 1
2
L2(Ω)2

×
∫ T

0

‖v(t, ·)‖H1(Ω)2‖y(t, ·)‖ 1
2
H1(Ω)2‖z(t, ·)‖

1
2
H1(Ω)2 dt

� ‖y‖ 1
2
U‖z‖ 1

2
U‖v‖V

(∫ T

0

‖y(t, ·)‖2
H1(Ω)2 dt

) 1
4
(∫ T

0

‖z(t, ·)‖2
H1(Ω)2 dt

) 1
4

� ‖y‖U‖z‖U‖v‖V,
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or sup0�=v∈V
|n(y,v,z)|

‖v‖V � ‖y‖U‖z‖U. Similar to the proof of Theorem 5.2, the latter result together with
Theorem 3.7 and Lemma 5.1 completes the proof. �

Remark 5.6. Compared to Section 5.1, the smoothness indices of the spatial Sobolev spaces incorporated in
U or V has been lowered or raised by one, respectively. Because of the double or single occurrence of u ∈ U
or v ∈ V as arguments in the trilinear form n, the task of bounding n(u,u,v) is more difficult here, giving an
explanation why the arguments in the present subsection only apply to space dimension n = 2.

Similar to the no-slip case, besides existence and local uniqueness for sufficiently small data, we also have
local uniqueness of any solution:

Theorem 5.7. Let Ω ⊂ R
2 be a bounded Lipschitz domain that satisfies Assumption 3.1. Let (u, p) be a solution

of (5.5), then for sufficiently small δf ∈ V′, (5.2) with f reading as f + δf has a unique solution in some ball
in U × P around (u, p).
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