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Abstract. Well-posed space-time variational formulations in fractional order Bochner—Sobolev
spaces are proposed for parabolic partial differential equations, and in particular for the instationary
Stokes and Navier—Stokes equations on bounded Lipschitz domains. The latter formulations include
the pressure variable as a primal unknown and so account for the incompressibility constraint via
a Lagrange multiplier. The proposed new variational formulations can be the basis of adaptive
numerical solution methods that converge with the best possible rate, which, by exploiting the tensor
product structure of a Bochner space, equals the rate of best approximation for the corresponding
stationary problem. Unbounded time intervals are admissible in many cases, permitting an optimal
adaptive solution of long-term evolution problems.
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1. Introduction. The topic of this paper is the development of well-posed space-
time variational formulations of parabolic partial differential equations (PDEs) and
instationary Stokes and Navier—Stokes equations. Here and below, well-posed means
that the corresponding operator is boundedly invertible, or in the case of a nonlinear
equation, that its Fréchet derivative at the solution has this property.

We emphasize that the question about well-posedness is different from the
(intensively studied) questions about existence, uniqueness, and regularity of solu-
tions for right-hand sides in appropriate spaces. Indeed, for the latter questions it is
not an issue whether the corresponding parabolic operator is onto, i.e., whether its
range is equal to appropriate spaces of right-hand sides.

The present investigation of well-posedness is motivated by the development of
numerical solution methods. First, a numerical discretization can only lead to a
matrix-vector equation that is well-conditioned, uniformly in its size, when a contin-
uous, infinite-dimensional operator equation of the evolution is well-posed. In that
case, it is known by now how numerical solution algorithms of optimal asymptotic
computational complexity can be developed.

Second, for a well-posed problem, the norm of the residual of an approximate
solution is proportional to the norm of its error. Such an equivalence is paramount
for the development of adaptive solution methods that converge with the best possible
rates, in linear computational complexity. Although our interest mainly lies in the
construction of adaptive wavelet schemes, these observations about the necessity of
well-posedness apply equally well to other numerical solution methods, like finite
element methods.
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For evolution problems, as parabolic problems and instationary (Navier—) Stokes
equations, traditionally time marching schemes are applied. By applying an (implicit)
time semidiscretization, a sequence of stationary, elliptic PDEs in the spatial domain
is obtained that have to be solved sequentially. One drawback of this approach is
that it is inherently serial and not well suited for a parallel implementation. Recent
years have seen the emergence of methods that aim at overcoming or at least reducing
this disadvantage, e.g., the parareal method (see [LMTO1]). Successive time stepping
entails, moreover, that the time increment At at time ¢ is (essentially) independent
of the spatial location. In particular, successive time stepping does not generally
allow an efficient approximation of singularities that are localized in space and in
time. Finally, in applications where an approximation of the whole time evolution
is needed, as with problems of optimal control or in visualizations, successive time
stepping requires a huge amount of storage.

Having a well-posed space-time variational formulation of an evolutionary PDE
at hand, we advocate to solve the evolution problem numerically as one operator
equation on the space-time cylinder with an adaptive wavelet scheme [CDDO01, SS09,
CS11, Stel4]. Such methods are “embarrassingly parallel” and converge with the best
possible rate from the basis. Moreover, since these bases are constructed as tensor
products of bases in space and time, under mild (Besov) smoothness conditions on
the solution this best possible rate is equal to that when solving one instance of
the corresponding stationary problem. The latter property induces the reduction in
computational cost and storage not afforded by sequential time stepping.

Although we have wavelet schemes in mind, we emphasize that the advantages
of starting from a well-posed space-time variational formulation apply equally well
to other space-time solution schemes; see, e.g., [BJ89, BJ90, Tanl3, UP14, And14,
Mol14, AT15, LMN15, Stel5].

The interest in simultaneous space-time solution methods mainly arose in recent
years. Therefore, it still has to be seen to which extent the (mathematically prov-
able) asymptotic superiority of these discretization methods materalizes in ranges
of accuracy which are relevant in practical applications. Another issue is that the
present results for the instationary (Navier—) Stokes equations are not shown to hold
uniformly in the viscosity parameter.

This paper is organized as follows. In sections 2—4, we consider parabolic PDEs.
By application of the method of real interpolation, we derive well-posed space-time
variational formulations w.r.t. scales of spaces, being intersections of Bochner spaces,
with which we generalize results known from the literature.

In section 5, the core of this paper, we construct well-posed space-time varia-
tional formulations for the instationary Stokes problem. Although we build on results
obtained for the parabolic problem, we are not content with a formulation of the
flow problem as a parabolic problem for the divergence-free velocities. Indeed, only
in special cases can (Sobolev) spaces of divergence-free functions be equipped with
wavelet Riesz bases or, for other solution methods, with a dense nested sequence of
trial spaces. Therefore, well-posed variational formulations are constructed for the
saddle-point problem involving the pair of velocities and pressure.

In our previous work [GSS14] we arrived at a formulation that contains Sobolev
spaces of smoothness index 2. The same holds true for the formulations derived
in [K6h13] that allow more general boundary conditions and that extend to Ba-
nach spaces. Such Sobolev spaces require trial spaces of globally C'-functions whose
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construction is cumbersome on nonproduct domains. In the current work, such spaces
are avoided, and the arising spaces can be conveniently equipped with continuous
piecewise polynomial wavelet Riesz bases, for general polytopal spatial domains (see,
e.g., [DS99]). Related to this is that, unlike [GSS14, Koh13], we avoid making a “full-
regularity” assumption on the stationary Stokes operator, so that the current space-
time variational formulations are well-posed on general bounded spatial Lipschitz
domains. To establish the necessary inf-sup conditions, a key role is played by the
right-inverse of the divergence operator that was introduced in [Bog79].

Finally, in section 6 the results are extended to the instationary Navier—Stokes
equations. The results concerning the bounded invertibility of the instationary Stokes
operator are extended to the Oseen operator, being the Fréchet derivative of the
instationary Navier—Stokes operator. The spaces with respect to which we show
well-posedness satisfy all requirements to lead to easily implementable discretizations
in n = 2 space dimensions, but not in n = 3. In the latter case, some function
spaces still mandate trial functions that are continuously differentiable as a function
of the spatial variable. Furthermore, our formulations for the instationary Navier—
Stokes operator do not allow for a convenient incorporation of nonhomogeneous initial
conditions.

In this work, by C' < D we mean that C can be bounded by a multiple of D,
independently of parameters which C and D may depend on. Obviously, C' 2 D is
defined as D S C,and C < D as C <D and C 2 D.

For normed linear spaces E and F, by L(E, F') we will denote the normed linear
space of bounded linear mappings E — F and by Lis(E, F') its subset of boundedly
invertible linear mappings £ — F. We write ' — F' to denote that E is continuously
embedded into F. For simplicity only, we exclusively consider linear spaces over the
scalar field R.

2. “Classical” variational formulations of linear parabolic problems.
We recall known results on well-posedness of space-time variational formulations of
parabolic PDEs and extend them to unbounded time intervals.

Let V, H be separable Hilbert spaces of functions on some “spatial domain” such
that V < H with dense and compact embedding. Identifying H with its dual, we
obtain the Gelfand triple V «— H — V',

We use the notation (-,-) to denote both the scalar product on H x H and its
unique extension by continuity to the duality pairing on W’ x W for any densely
embedded W — H.

Let —0o < a < # < oo and denote, for a.e.

by a(t;-,-) a bilinear form on V x V such that for any n,{ € V, t — a(t;n, () is
measurable on I and such that, for some constants M,y > 0and A > 0, for a.e. t € I,

(2.1) la(t;n, Q)| < M|InllviKlvy (n, €V)  (boundedness),
(22)  altmm) +AIlE >AnlE (e V) (Ginding inequality).

For |I| = oo, we will need (2.2) for A =0, i.e.,

(2.3) a(t;n,n) = ~lnlly, (meV) (coercivity).
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With A(t) € L(V, V') being defined by (A(t)n)(¢) = a(t;n, (), we are interested
in solving the parabolic initial value problem to find u such that

(2.4) du () 4 Atyu(t) = g(t) (te D),
u(a) = Ug,
where for @ = —o0, the initial condition should be omitted.

In a simultaneous space-time variational formulation, the parabolic PDE reads as
finding u from a suitable space of functions of space and time such that

25)  (Bu)w)= [ (@000 + attw®. o)t = [ (a0).00) = o0
for all v from another suitable space of functions of space and time.

In [SS09], the initial condition was appended by testing it against additional test
functions. There, the following result was proved (see also [DL92, Chap. XVIII,
sect. 3] and [Wlo82, Chap. IV, sect. 26] for slightly different statements).

THEOREM 2.1. For —oco < a < < 00, and under conditions (2.1)~(2.2), with
(Bew)(v1,v2) := (Bw)(v1) + (w(a),va),
it holds that
B, € Lis(Lo(I; V)N HY(L; V'), (Lo(I; V) x H)'),
with the norm of B! being bounded by an increasing function of y~%, M, |I|~', and
max(0, A|I]).

Using this theorem, for given g € Ly(I;V’) and u, € H, a valid, well-posed
variational formulation of (2.4) reads as finding u € La(I; V) N HY(I; V') such that

(2.6) (Bew)(v1,v2) = g(v1) + (ua, v2)  ((v1,v2) € Lo(I;V) x H),

or, in operator form, as Bou = [g u,]'. For completeness, with a well-posed weak
formulation, we mean one that corresponds to a boundedly invertible mapping.
A necessary ingredient for Theorem 2.1 is that

(2.7) Ly(L,V)NHNL; V') — C(I, H);

see, e.g., [DL92, Chap. XVIII, sect. 1, Thm. 1] for a proof of this continuous embed-
ding result. By definition of the norms involved, the norm of the embedding depends
only on f — a when it tends to zero.

From the norm of B! being uniformly bounded for |I| — oo when A\ = 0 one
infers the following.

COROLLARY 2.2. For —oo < a < 8 < 00, and under conditions (2.1) and (2.2),
or (2.3) when ff = oo,

B. € Lis(Lo(I; V)N HYI; V'), (Lo (1; V) x H)').

As a preparation for handling the case that @ = —o0, next we focus on the case
of having a homogeneous initial condition. For s > 0, and ¢ € {«, 5}, let

H§ (5,(I) := closgs(n{v € C>(I): suppv N {6} = 0}.

Note that HS

07{5}(1) = H*(I) when ¢ = £o0.
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Noting that for w € H, w = 0 in H is equivalent to w = 0 in V', from (2.7) we
infer that for —oco < «,

Lo(I; V)N Hy 1oy (I V') = {w € Ly(L; V) N HY(L; V') w(e) = 0 in H}.

From Corollary 2.2, we conclude the following.

THEOREM 2.3. For —oco < a < 8 < 00, and under conditions (2.1) and (2.2), or
(2.3) when B = oo, for the operator B defined in (2.5), it holds that

B € Lis(La(1;V) N Hy 1oy (1; V'), La(I; V).

The norms of B and B~! are bounded by those of B, and B!, respectively.

With this result, a valid, well-posed weak formulation of the parabolic initial
value problem (2.4) with homogeneous initial condition u(a) = 0 reads as finding
u€ La(L; V)N H&{a}(I; V') such that

(Bu)(v) = g(v) (ve La(L;V)

or, in operator form, as Bu = g.
Finally, the same argument that led to Corollary 2.2 yields the following result.

COROLLARY 2.4. For —oo < a < 8 < 00, and under conditions (2.1) and (2.2),
or (2.3) when |I]| = oo,

B € Lis(Lo(I; V) N Hy 100 (1; V'), La(1; V).

3. Well-posed variational formulations w.r.t. scales of spaces. By using
well-posedness of variational formulations of parabolic problems with a reversed time
direction, duality, and the Riesz—Thorin interpolation theorem, we derive well-posed
variational formulations with respect to scales of spaces. The exposition will mainly be
used for our subsequent treatment of the instationary Navier—Stokes, but the results
are also relevant for their own sake. In this section we consider homogeneous initial
conditions. We defer the discussion of inhomogeneous initial data to the next section.

Let S(t) := —t for t € R, and let B denote the parabolic operator B with
I = (o, B) reading as S(I) = (=5, —a) and a(t;n, ¢) reading as a(S(t); (,n).

Remark 3.1. For finite I, or I = R, it would be more convenient to replace S(t)
by t — S+ a —t, in which case S(I) = I. The current setting, however, allows us to
include the case of I being a half-line.

Throughout this and the next section, let o € [0,1] and W be a separable Hilbert
space with W — V and dense embedding, such that

(3.1) Vo~ [H W] 1,

1+o

where the right-hand side denotes the (real) interpolation space of “exponent” ﬁg,

i.e., V=W when p =0, and V is halfway between H and W when p = 1. We define
(3:2) vete = (g W], voette = (vsttay (s e 0,1)),

which generally involves a harmless redefinition of V. We assume that H, W, I, o,
and B are such that

(3.3) B € Lis(Ly(I; V') N Hy 0y (1; V1), Lo(I;V79)),
(3.4) B € Lis(L2(S(1); VITe) N Hy (_y(S(1); V), La(S(1); VI79)').
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Note that for , and thus for

W=V,

(3.3) and so equivalently (3.4) follow from (2.1) and (2.2), or (2.3) when |I| = o0, as
shown in Corollary 2.4. Validity of (3.3) and (3.4) for ¢ > 0 will be discussed after
the next lemma.

LEMMA 3.2. The statement (3.4) is equivalent to
(3.5) B € Lis(Ly(I; V'), (La(I; V) N Hy 15y(1; V),

and the norm of B or B~ implied in (3.4) is equal to that of B or B~1 in (3.5).

Proof. For w : I — V2! being smooth and compactly supported in I, and v €
Ly(I; Vo) n Hy 5y s V1=9) integration-by-parts followed by a change of variables
that reverses the time direction shows that

(Bw)(v) = /I— <w(t)7 Ccll:(t)> +a(t;w(t),v(t))dt

dt
= (BS™)(S*w) = (B'S*w)(S*v).

-/ <<S*w><t>, d(5™) <t>> T a(S(), (S w)(0), (570)(0))dt
S(1)

Here, S* is defined by (S*w)(t) = w(S(t)). The operator S* is an isomorphism
between Lo (S(I);V'7¢) and L(I;V'7¢) and between Lp(S(I);V'*e) N Hy (4
(S(I);Verl) and Lyo(I; V1ite) ﬂHé,{_ﬁ}(I; Ve~1). By the density of the smooth, com-
pactly supported functions w : I — Vel in Ly(I;Ve~!), the proof is
completed. ]

In the forthcoming Theorem 3.5, from (3.3) and (3.5) we will derive bounded
invertibility of B w.r.t. “intermediate” spaces using the Riesz—Thorin theorem. Until
this theorem, we will discuss the validity of conditions (3.3)—(3.4) for o > 0.

Under mild additional conditions, for a suitable W, (3.3), and equivalently, (3.4),

can be expected to hold for , which will be particularly relevant for our

treatment of the instationary Stokes problem. Indeed, considering the case that
A(t) = A(t) for ae. t € I, let

D(A(t)) == {u € H: A(t)u € H},

equipped with \/|[A(t)ul|%; + [Ju||%. Under the condition that D(A(t)) is independent
of t € I, picking some ty € I, let

Then (2.1)-(2.2) imply that V =~ D((A(to) + AI)2) = [H,W]1, ie., (3.1) is valid
for o = 1. Moreover, the property (3.3), known under the name mazimal reqularity,
and equivalently (3.4), holds true when |I| < oo and t — A(t) € C(I,L(H,W))
(see [PSO01], also for the addition of possible nonsymmetric lower order terms to the
operator A(t)). Being defined in terms of the domain of A(tp), and not in terms
of higher order Sobolev spaces, we note that maximal regularity does not require
smoothness of the underlying spatial domain or that of the coefficients of the operator

A(t) as a function of the spatial variables.
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Assuming (2.3), conditions (3.3)—(3.4) for p = 1 can also hold for |I| = oo.
In particular, in the autonomous case A(t) = A = A’ > 0, (3.3)—(3.4) with W =
D(A) can be verified by direct calculations by expanding functions w on the space-
time cylinder as w = 3, wy(t) ® ¢ with {¢} being an orthonormal basis for H of
eigenfunctions of A (cf. [CS11, Thms. 7.1, 7.3]).

Remark 3.3. With the choice (3.6) for W, the spaces V* for |s| € (1,2] depend on
A(to), and it is therefore a priori not clear how to equip them with a (wavelet) Riesz
basis. Therefore, let W be another separable Hilbert space, with W < W and dense
embedding. In applications, for V' being a Sobolev space of order m on a domain
QCR” eg,V=Hm"Q) orV=HJ(Q), typically W will be given by H>™(Q)NV.
Corresponding to W, let

V2= [H,W],, V72:={V>») (sel0,1]).

Then V* < V* for s € [0,2]. Moreover, it holds that A(to) + A € L(W, H). Since
from (2.1), V — H and A(to)+AI € L(V, V'), we infer that for s € [1,2], A(to)+ Al €
L(V#,V*=2). Now assume that for some 0 € (0, 1],

lullyivo S I(A(to) + ADully-rva  (u € VIF?),

known as an elliptic regularity condition. In the example of (A(t)n)(¢) = [, Vn-V{dz,
V = H{(Q), and W = H2(Q) N H(R), it is known to be satisfied for 6 € (0, 3)
(“moderate” elliptic regularity) for Q being a bounded Lipschitz domain, and for
6 € (0,1] (“full” elliptic regularity) for 2 being bounded and convex. Then for any
we VI using V10 < V11 we have

lullyivo S 1(Ao) + ADully—1v0 S [[(Alto) + A)ullv-1+e S [lullyise,

or V10 < V140 and so
(3.7) VeV (|s| <146).

As stated before, from (3.3) and (3.4) we are going to derive, in Theorem 3.5,
boundedly invertibility of B w.r.t. a whole range of “intermediate” spaces. A subrange
of these results will only involve spaces V* for |s| < 1 4 0, which in applications
therefore can be equipped with (wavelet) Riesz bases.

Our discussion about (3.3)—(3.4) is finished by the following remark.

Remark 3.4. For (J,8) € {(I,a),(S(I),—B)}, it holds that [Lo(J;V?),
Ly(J3VO)]y = La(J; V' 2)', and
Lo(J; V') MVH 5y (J; V), La(J: V) 0 HY, 53 (T V“)}
)
~ Lo(J; V) N Hy 15y (J; V).
Consequently, if (3.3)—(3.4) are valid for ¢ = 1, then from the fact that (3.3)—(3.4) are
always valid for ¢ = 0, one infers that (3.3)—(3.4) hold for any intermediate ¢ € (0, 1).

We are ready to present the result about bounded invertibility of B w.r.t. a scale
of spaces.

THEOREM 3.5. Let (3.3) and (3.4) be valid. For s € [0,1] and § € {a, B}, let

FIS,{(;} (I) := [La(1), Hg (57(D)]s
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and
A5 = Lo(I; V7020  q Hy o (1; V17290070,

Then for s € [0,1] 4t holds that

B € Lis(A, (H)5%)).

90“

Remark 3.6. We recall that Hg{é}( ) = H0{6}( ) = H*(I) for s € [0,1) or

d = £o0. For § # +o0, HO{(;}(I):HO,{(;}(I) C H*(I) for s € (3,1], and HO {6}(1)

1

H§ (5, (I) with the norm on Ho,{é}(l) being strictly stronger than that on Ho,{a}( )
1

(and so H0 ) S 02{6}(1)); see, e.g., [LM68, Thm. 11.7]). In the literature,

=

sometimes the space H0 {5}(1) is also denoted as HO%O {5}(1).

Proof. Note that s = Lo(I; V') N Hy (5, (1; V) = Lo(L;VI79) = 5,
and so () 05) — (o, 1)/, with dense embeddings. By the application of interpolation,
from (3. 3) and Lemma 3.2 we infer that

B € Lis([H) o, K} s, [(H)5) () 5) )

0,00 70,a
Since

(3-8) [(A5), ()]s = [, #3611 s

o,

the proof follows from the characterization of these interpolation spaces given in the
following lemma. 0

In view of the definition of 75, note that for o < 1, Lo(I ;Vize) o Hé’{é}(I;VQ_l)

and Hj (5, (1;Ve71) &> La(I; V'7¢). Nevertheless, we have the following result.

LEMMA 3.7. For s € [0,1] and 6 € {«, 8}, it holds that
Hys =~ [%p %pgl,s]s

o,

Proof. In the last part of this proof, we will demonstrate the claim for the case
I = R. We start with showing that this result implies the result for I C R. In the
following, let /7% denote the space .7 .5 with I reading as R.

There exists an extension E of functions on I to R with E € L(La(I), L2(R)) and
E € L(H, {6}( ), H(R)). Furthermore, there exists a mapping R of functions on R
to functions on I with R € L(La(R), Lo(I)), R € E(Hl(R),H&{é}(I)), and RE = Id.
To show the latter, it is sufficient to discuss the construction of R for § = « and
I = (a,00). Let E be an extension of functions on (—oo,a) to functions on R such
that £ € £(Ly(—00,a),Ly(R)) and E € L(H'(—oc0,a), H*(R)). Then R defined by
Ru = u — E(u|(_s0,a)) satisfies the assumptions.

By interpolation and a tensor product argument, we have for s € [0, 1],

R@Id € L(H*(R; VU200 o o0 (1; V729070,
E®Ide E(ﬁg’{é}(l; y(=29)(-0)y gs(R; y(1-2)1-0))y,

from which we infer that

R®Id € L(A°,A25), E®1d e L(AS5, 7).
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Writing for u € 75, u = (R®1d) o (E' ® Id)u, the last result together with the
claim for I = R shows that
lullzy, S NE @]z = | E@1d|lsp0 1), S lulliee, o2 ),

[ull e, e 1. S NE @1d[po sy, = 1B Q1| pe S llull

which proves the claim for a general interval I C R.

There remains to prove the claim for I = R. With (Aw)(v) := (w,v)y1+. and
D(A) = {w € VI*te: Aw € H}, let {¢} be an orthonormal basis for H consisting of
eigenfunctions, with eigenvalues A, of the unbounded symmetric operator A : H C
D(A) — H, which basis exists in virtue of the compactness of the embedding vite
H (see, e.g., [DL90, Chap. VIIIL, sect. 2.6, Thm. 7]). With 4(¢, ) := [g u(t,)e "™t
writing (¢, ) = X_, 4, (§)p, it holds that

a0 = | ?a@(@aﬁd@
[P :/me(g)ﬁ A +m |
R ¥ A1+g
and so

2 1
A, -+ el

\ITe
Hu||[%O 2, = /Z|u¢ )2 )\1+g 2| de
A$+g
2 Q. § (1— 21.:)»(91 o)
Zl% )l + 1+ 1EP)2 A,

= Hu”jﬁm

where we have used that for s € [0,1] and 1, > 0, 2(n° + (*) < (n+()* <
n° 4+ (¢°. ]

Remark 3.8. In view of the application of Theorem 3.5 to construct an adaptive
wavelet scheme, let us briefly comment on the construction of tensor product wavelet
Riesz bases for the spaces 7, and %”;58. For more information, we refer to [SS09]

and, for the case s = 3, to [LS15]. If © () is a collection of temporal (spatial)
wavelets that, when normalized in the corresponding norm, is a Riesz basis for Lo (1)
(Vizet2ee) and Hg {6}( ) (V(1=29(=0)) then, normalized, the collection © ® ¥ is a
Riesz basis for 7 s

Suitable collectlons © are amply available. When V is a Sobolev space of order
m = 1 on a general polytopal domain ) C R™, then the same holds true for 3 when the
smoothness indices 1 — o+ 250, (1 —2¢)(1 — o) € (—2, 2). Indeed, for those indices, ¥
can be a collection of continuous piecewise polynomial wavelets, whereas smoothness
indices outside (—2, 3) require smoother (primal or dual) wavelets, whose construction
is troublesome on nonrectangular domains. For ¢ € {s,1 — s}, these conditions are
fulfilled when ¢ = 0, whereas for ¢ = 1 they read as |s| < 2 (where |2s| < 1+ 6 might
already be needed to guarantee that V< is (isomorphic to) a Sobolev space of order

2%; cf. (3.7)).
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When the bases © and ¥ have polynomial reproduction orders d; and d,, re-
spectively, then functions in ), that satisfy a mild (Besov) smoothness condition
can be (nonlinearly) approximated from the tensor product basis at an algebraic rate
min(d; — s, d—) when ¢ = 0 (up to a logarithmic factor when s = 0 and d; = d“’n_l)
dy 25

)

or, when Q = 1, at rate min(d; — s, ) (up to a logarithmic factor when s = 0
and d; = ) Note that for d; — s > d ord, — s> da=2s , these rates are equal to
the generally best possible rates of best approxnnatlon in the spaces V or V2¢ for the
corresponding stationary elliptic problem. Consequently, using the adaptive wavelet
scheme the time evolution problem can be solved at an asymptotic error versus work
rate which is equal to solving the stationary problem.

Noting that for g, s € [0,1], 1 — g+ 2s0 > 0, and for ¢ € [0,1], (1 —25)(1—0) >0
if and only if s < 3, we infer that for all s € [0,1]\{3}, either 5, or %;}BS,
which spaces appear in the statement B € Lis(J¢’ ,, (%”;Eﬂ’) given in Theorem 3.5,
involve a “spatial” Sobolev space of negative order. Interestingly, for the special case
s = 57 no Sobolev spaces of negative order enter the formulation. This is in particular

convenient for numerical schemes that are not based on wavelets. Below we repeat the
variational formulation for this case. Note that jfg{; is independent of o, which fact

we use to formulate the next corollary under the mildest conditions which correspond
to the case o = 0.

COROLLARY 3.9. Under conditions (2.1) and (2.2), or (2.3) when |I| = oo, it
holds that

B e Lis(La(I; V)N Hg{a}( H), (L:(L; V)N HOZ’{B}(I; H))) .

This latter result generalizes corresponding known results for the half-line I =
(o, 0) to I = (v, B) for general —oo < o < B < 00, so in particular to finite I. (See,
e.g., [BB83, Thm. 2.2], [Fon09, Thm. 4.3] (also for nonlinear spatial operators), and
[LS15]. The proofs of well-posedness in these references are based on the application
of a Hilbert transform in the temporal direction.

Remark 3.10. For |I| < oo or I = R, the problem of finding w € Lo(I; V) N
(I; H) such that (Bw)(v) = g(v) (v € Lo(I; V)N H {B}(I; H)) is equivalent to
d
(39) / (000840 - 0) +altw(), 008+ - )it = [ o005+ 1)
I I
(ve Ly(L; V)N Hoz{a}(I;H)). Now if, for a.e. t € I, a(B+a—t,-, ) = af(t,-,-), and
a(t, -, ) is symmetric, then the bilinear form at the left-hand side of (3.9) is symmetric.
It can, however, not be expected to be coercive.

4. Inhomogeneous initial condition. A valid, well-posed weak formulation
of the parabolic initial value problem (2.4) with a possibly inhomogeneous initial
condition at @ > —oo was already given in (2.6). In this section, we investigate
whether for (s, 0) # (1,0) such a problem can also be solved in Ly(I;V1=0t2s¢) N
H*(I; V(1=29(1-2)) that for s € [0, 3) equals the space H;5. In order to do so, we
need a substitute for the embedding from (2.7).

PROPOSITION 4.1. For any s € (3,1] and € > 0,
LQ(I; Vl—g+25@) N HS(I; V(1—2s)(1—g)) N C(I_, V(Qs—l)g—s),

with a compact embedding when |I| < oco.
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Proof. We apply [Ama00, Thm. 5.2] (see also [Sim87, Cor. 9]) withn =1, X=1,
Eo= V=29)(0-0)  p = yl-et2se g— 5 5= 0, and py=p1= 2 (so that py= 2).
Thanks to s > %, there exists a 6 € [0,1] with sg:= s(1 — ) = = > 1 where we use
that it is sufficient to consider —e > 1 — 2s. Taking E= [V (1~ 2)(1- 9),V1 ot2se], =
v (2s=De—¢ 4]l conditions are satisfied, and our statement follows. 0

Unfortunately, given an s € (%, 1], for any € > 0, the mapping Lo(I; V1=2+25¢) N
H3(I; V(=29)(-0)) _ y(2s=he=e . 4 1 y(a) cannot be surjective, since u(a) is
also in V(2s=De=¢/2 " Consequently, on the basis of Proposition 4.1, for s < 1 it
is not possible to solve the parabolic problem with inhomogeneous initial condition
in Lo(I; Vi—et2seyn [gs(1; V(=29 (1=2)) from a well-posed weak formulation of type
(2.6), so where the inhomogeneous initial condition is appended as an equation in
V (2s=1e=¢ Note that the well-posedness of (2.6) implies that Lo(I; V)N HY(I; V') —
H : u > u(a) is surjective.

With a formulation of type (2.6), the initial condition plays the role of an essential
condition. As proposed in [CS11] (see also the earlier works [BJ89, BJ90] for A(t) =
A= A" > 0) it is, however, possible, and computationally more convenient, to impose
it as a matural condition by applying integration-by-parts over time.

Let u be a “classical” solution of problem (2.4). Multiplying the PDE with smooth
test functions t — v(t) € V1T2725¢ that vanish at 3, integrating over space and time,
applying integration-by-parts over time, and substituting the initial condition yields

dv
[~ (0. 50) =+ attuoionie = [ao)00)n+ o)

For v as above, and t — u(t) € V172¥25¢ heing smooth on I and vanishing at {a}, the
bilinear form at the left-hand side reads as (Bu)(v) as defined in (2.5). For s € [0, 1],
such functions u and v form dense subsets in ¢, and %” , respectively. We
conclude that the unique extension of the left- hand 51de to a b1hnear form on J77, x
%‘Z}’ﬁs is (Bu)(v). For s € [0, 5), (Jfglﬂs) , and u, € V(Zs—Dete Proposition 4.1
shows that the right-hand side is an element of (%lﬁ_s)’ . For s = 0, this holds true
even when u, € V72 by (a generalization of) (2.7). In line with these facts, we
recall that for s € [0,3), 75, = La(I;V'=725¢) 0 H(I; V1 =2)(1=0)) 50 without
the incorporation of a homogeneous boundary condition at . From Theorem 3.5 we
conclude the following result.

THEOREM 4.2. Assume conditions (3.3)-(3.4). Then for any s € [0,1), assuming
that g € (%1’6—5)/7 and, for some € > 0, uq, € V&=Dete  or cven u, € V70 when
s =0, a valid, well-posed weak formulation of the parabolic initial value problem (2.4)
with possibly inhomogeneous initial condition u(a) = u, reads as finding u € H;,,
such that

(Bu)(v) = g(0) + (e, v(@)) i (v € H157).

For alternative well-posed variational formulations of the inhomogeneous parabolic
initial value problem (on the half-line) we refer to [Tom83, egs. (0.15), (0.16) and
Thm. 2] and [Fon09, Thm. 4.10].

5. Instationary Stokes. For n > 2, let ) C R" be a bounded Lipschitz domain,
and —o0 < a < f < oco. Given a constant v > 0, a vector field f on I x 2, and a
function g on I x 2, we consider the instationary inhomogeneous Stokes problem with
no-slip boundary conditions and, for the moment, homogeneous initial condition to
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find the velocities u and pressure p that satisfy

%—;‘—VAxu—i—pr:f on I x £,
divx,u=g9g onl xQQ,

(5.1) u=0 onl x0Q,
u(e,)) =0 onQ,
Jopdx =0.

Remark 5.1. By introducing the new unknowns /v u and %, and ¢ = vt, one

arrives at a Stokes problem with v = 1, but time interval (vo,v8). So in view of
Theorem 2.1, unless 8 = oo one cannot expect to arrive at results that hold uniformly
for v | 0.

With

2

E

=
|

// 6—u-v+uvxuzvxvdxdt,

d(p,v) := 7//pdivvdxdt,
(5.2) Al

f(v) := /I/Qf-valxdt7
9(q) = /I/ngdxdt,

in variational form it reads as finding (u, p) in some suitable space, that “incorporates”
the homogeneous initial/boundary conditions for u and fQ pdx = 0 such that

(S(u,p))(v,q) := c(u,v) +d(p,v) + d(g,u) = £(v) — g(q)

for all (v,q) from another suitable space. As always, the bilinear forms should be
interpreted as the unique extensions to the arising spaces of the bilinear forms on dense
subsets of sufficiently smooth functions in these spaces. Consequently, in particular,
sometimes it will be more natural to read — [, pdivvdx as [, v-Vpdx and [, 2v dt
as — [, %—‘t'u dt.

We start with collecting results about the stationary Stokes problem. Let, for
s €10,2],

H*(Q) = [La(2), H*(Q) N H ()]
H*7H(Q) = [(H'(Q)/R)', H' () /R)]

s
R
E-A
37

where the second definition should be interpreted w.r.t. the embedding of H!(Q)/R
into (H'(2)/R)’ by means of H*(2)/R — Ly(Q)/R ~ (Ly(Q)/R)" — (H(Q)/R)".
Let

a(u,v) = u/ Vu: Vvdx, (cﬁ;/v)(p) = —b(p,v) = 7/ pdivvdx.
Q Q

For s € [0,2], a is bounded on H*(Q)" x H>~#(Q)", and b is bounded on H'~5(Q)" x
H5(Q), ie., div € L(H*(Q)™, H*1(2)). We set

HO(div0;Q) : = {u € La(Q)": divu = 0},

H*(div0;9Q) : = {u e H*(Q)"™: divu = 0}.
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For smooth fields u, it holds that divu = divu. On the other hand, it is known that
HO(div0;Q) = {u € Ly(2)": divu =0, ulpn - n = 0}.

__ We will be interested in “inf-sup conditions” satisfied by b, i.e., in surjectivity of
div, for which operator we will construct a right-inverse. It will be relevant that the
same right-inverse is bounded simultaneously w.r.t. different norms.

LEMMA 5.2. There exists a mapping F with F € L(HE(Q), H¥T1(Q)™)(k € Ny),
(divoF)v = v when [, v(x)dx =0, and F’ € L(L2(Q)™, H*(2)).

For €2 C R™ being bounded and star-shaped with respect to a ball K, F was con-
structed in [Bog79] as Fu(x) = [, G(x,y)v(y)dy with G = (G1, ..., G,) being defined
as G(x,y) = fol it (x—y)w(y + *5¥)ds for arbitrary w € C§°(K) with [, wdx = 1.
Membership of F' € L(HE (), HETH(Q)) (k € Np) was shown in [Bog79], [Gal94, Lem.
11.3.1], and F' € L(Lo(Q2)™, H*(Q)) in [GHHO6]. In [Gal94, GHHO6], the construc-
tion was generalized to any bounded Lipschitz domain €2 using the property that such
an € can be written as a finite union of star-shaped domains.

COROLLARY 5.3. There exists a mapping divte L(H®(Q), H**(Q)")(s € [-1, )
with divodivt = 1I.

Proof. For s € [0,1], we have F € L([L2(Q), H} ()]s, [HE(Q)", HZ(2)"]s) by
Lemma 5.2. For s € [0,3), it is known that [Lo(Q), Hj(Q)]s ~ H*(2) as well as
[HE ()", HE ()], ~ H'**(Q)". Defining div’ as the restriction of F to functions
with vanishing mean, in particular we have divt € L(H*(Q), H*5(Q)").

With 1 := 2 — vol(Q) =, for u € C§°(Q2)" and v € C*°()/R, we have

(u,div* v) @) = (F'@ — (F'@, 1) o) 1, 0) 1y (),

ie., (divh) = @ — F'i — (F'ii, 1), 1. From Lemma 5.2, we infer that (div')’ €
L(Ly(Q)", HY(Q)), i.e., divT € L(H(Q), Lo (™).

By an application of interpolation, we conclude that div™ e £(H* (), H**(Q)")
for s € [~1,3). Since for smooth v with zero mean, (divodivt)y = v, the proof is
completed. ]

The next corollary of Lemma 5.2 says that, under conditions, first interpolating
between Lo(2)™ and (H?(Q) N HE(2))", and subsequently taking the subspace of
divergence-free functions yields the same space as when both operations are applied
in reversed order. This result will be essential for the well-posedness proof.

COROLLARY 5.4. With

H*(div0; Q) := [H(div 0; Q), H*(div0; Q)] = (s € [0,2]),

it holds that
H*(div0; Q) ~ {u € H*(Q)": divu=0} (s€[0,2)).

Proof. By the definition of a real interpolation space using the K-functional, it
holds that

(5.3) H*(div0;Q) < {u e H*(Q)": divu=0} fors e [0,2].

We have div € L(HZ(Q)", H'(Q) N HL(Q)) and div € L(Ly(Q)", H1(Q)). As we
have shown in Lemma 5.2 and Corollary 5.3, div admits a right-inverse divt with
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divt € L(HY(Q) N HY(Q), HZ(Q)™) and divt € L(H™1(Q), L2(Q)™). By an abstract
interpolation result from [LM68] (cf. [MMO8, Lemma 2.13]), the existence of such a
right-inverse guarantees that

{u € [Ly()™, H2(Q)"]. : divu = o}

s
2

5.4
(54) (s € [0,2)).

o~ Hu € Ly ()" divu = O} , {u € Hi(Q)": divu = OH .

5
For s € [0, 3) the space on the left in (5.4) is isomorphic to {u € H3(Q)": divu = 0}.
By H§(Q) — H2(), the space on the right in (5.4) is continuously embedded in
H?(div 0; ©2), which completes the proof. d

The next result is the analogue for the Stokes operator on divergence-free func-
tions of Remark 3.3 dealing with standard elliptic operators.

~ PROPOSITION 5.5 (“moderate” elliptic regularity). With A € L(H(div0;Q),
H(div0;9Q)") defined by

(Au)(v) = a(u,v) (u, v e H(div0;Q)),
let D(A) := {u € H(div0;Q): Au € H(div0;Q)}, equipped with the graph norm.

Then
[H°(div0;Q), D(A)]s ~ H*(div0; Q) (s € [0,2)).

Proof. As shown in [MMO08, Thm. 5.1], for Q being a bounded Lipschitz domain,
and s € (3,3),
D(A%) =~ {ue H*(Q)": divu = 0}.

Since the space on the left is isomorphic to [H(div 0; ), D(A)]s, the proof is com-
pleted by Corollary 5.4 and the application of interpolation. ]

For the analysis of the instationary Stokes operator, for s € [0,1] and 6 € {«, 8}
we set

Uy = Lo(I; H** (") N H 15,(T; La()™),
Py = (Lao(I; H>H(Q)) n Hy 35, (1 HY(Q)))
Applications of Lemma 3.7 for ¢ = 1, show that for ¢ € {«, 8} and s € [0, 1],
[, %3] = [Lo(T; La()™), Lo(I; H*(Q)™) 0 Hy g5y (T; Lo (™))«
= Lo(I; H**(Q)") N Hy (5, (I; Lo(Q)") = %5,
and
(23, P55 = [(La(I; H(Q)) 0 Hy 53 (1 HH(Q))), La(1; HY(9))]
= [Lo(I; HHQ)), Lo(T: B () 0 Hy g5y (I H Q)]

=~ (Lo(I; H' Q) N Hy 5, (I HH(Q)) = 25,

S

—S

Well-posedness of the instationary Stokes operator is established next.

THEOREM 5.6. Recalling that @ C R™ is a bounded Lipschitz domain, for s €
(%, %) it holds that

S € Lis(% x P4, (U3~ x 2L°)").
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Proof. One easily verifies that S € L(%; x &, (%ﬂl_“" x PL=5Y) is valid for
s € {0,1}, meaning that it is valid for s € [0, 1].

Corollary 5.3 gives the existence of a right-inverse div?' of div that satisfies both
divt € L(H71(Q), L2(2)") and, for s € [0,2), div’ € L(H?~1(Q), H?*(Q)"), from
which it follows that I @ divt € L((2L7*)/,%). This implies that for s € [0,3),
I ®div e L(ZS,(2L72)) is surjective, i.e.,

inf sup M >0,

0#£gEPL~° 0AueUs ||UH%; Q‘|95*5

and analogously, that for 1 — s € [0, %), ie., s€ (i, 1],

d(v,p)

> 0.
pH@;

inf sup
0#pe 3 1—s
B Ogéve%ﬁ

v||%5175

We conclude that both these inf-sup conditions are valid for s € (i, %)

Having established the boundedness of S and both inf-sup conditions, the theory
about the well-posedness of saddle-point problems (e.g., [GSS14, sect. 2]) shows that
what remains to prove is that

(5.5) (Cu)(v) :=c(u,v)
defines an invertible operator between the spaces {u € %°: d(#!~% u) = 0} and
{v e %ﬁlfsz d(Z5,v) =0})".

For (¢, 6) € {(s,@), (1=s, 8)}, using 2,7 = Ly(I; H' = (Q)+(H 15,)'(I; H(R)),
we infer that

{ue s :d(2, 5 u) =0}
= {u € La(L; H*(Q)"): d(Lo(L; H' (), u) = 0}

A {w e 5 gy, (13 0@ d((FHg ) (T HY(9)), 1) = 0}
= {u € Ly(I; H*(Q)"): (I @ div)u = 0}

N{u e H 5 (1 HY(Q)"): (I  div)u = 0}
(5.6) ~ Lo (I3 H*(div 0; Q) N H; (5, (1; HO(div 0; Q)) =: % (div 0),

where the last isomorphism is valid for ¢ € [0, 3) by virtue of Corollary 5.4.
On the other hand, the analysis from sections 2-3 shows that

C € Lis(Ly(I; D(A)) N Hy ((1; HO(div 0;Q)), Ly (I3 H(div 0;©2))),
C € Lis(La(I; HO(div 0;Q)), (La(1; D(A)) N Hy 5y(1; HO(div 0;©2)))')

(i.e., the maximal regularity results (3.3) and (3.5) for o = 1, H = H%(div 0;Q), and
W = D(A)), so that by Theorem 3.5,

(5.7) C € Lis(% (div 0), (%, ~*(div0))') (s €[0,1]),
where

(5.8) Uy (div 0) := Lo(I; [HO(div 0;2), D(A)]¢) N H (0 (I3 HO(div 0; ).
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The proof is completed by H2<(div0; Q) ~ [H°(div 0; ), D(A)], for ¢ € [0, 2), as
shown in Proposition 5.5 using the “moderate elliptic regularity,” and thus %S (div 0) ~
%z (div 0). |

Remark 5.7. Adaptive wavelet methods inherit, through the Riesz basis prop-
erty, “stability” from the underlying infinite-dimensional problem. If the instation-
ary Stokes problem is solved by another numerical method, stability of the finite-
dimensional discretized system has to be verified separately. For the presently con-
sidered space-time formulation the results from [MSW13] then seem relevant.

Under an additional regularity condition on the stationary Stokes operator Sg
defined below, the range of values of s for which Theorem 5.6 is valid can be extended.
With

(So(u,p))(v, Q) = a(u’ V) + b(pa V) + b(qa 11)
we have Sy € E(ﬁS(Q)" x H571(Q), (ﬁQ*S(Q)” x H1=5(Q))) for s € [0,2]. The “full”
regularity condition imposed in the following theorem is known to be satisfied for
n € {2,3} and 90N € C?; see, e.g., [Tem79, Chap. 1, Prop. 2.3].1

THEOREM 5.8. Assuming So € Lis(H2(Q)™ x H*(Q), H*(Q)" x H'(Q)), it holds
that
S € Lis(Us x P5,(U;—° x 247°))

for s €10,1].

_ Proof. Since Sy is symmetric, we also have Sy € Lis(H*(Q)"x Hs=1(Q), (H>5(Q)"
x H'=5(Q2))") for s = 0, and so for s € [0, 2].
Defining div™ := g + u by (u,p) := S5 (0, 9), we have divodivt = I, and

divt e L(H*YQ), H*(Q)™) (s €[0,2]).
Following the proof of Corollary 5.4, replacing H2(€2) by H2(Q), we infer that
H*(div0; Q) ~ {u e H*(Q)": divu=0} (s€]0,2).
For the operator A from Proposition 5.5 we find that D(A) ~ H2(div 0;2), and so

[H°(div0;Q), D(A)]: ~ H*(div0;Q) (s €[0,2]).

Wl

Indeed, obviously D(A) < H2(div0;Q). To show the reversed embedding, for f €
H 9(div; Q) consider Au = f. After extending f, with preservation of its norm, to
Ly (Q)™, the solution u is the first component of the solution (u, p) of So(u,p) = (f,0),
and 50 [[ull 2y S £ zagene-

Using these ingredients, by following the proof of Theorem 5.6, the statement is
proven. ]

Remark 5.9. One might think that div™ constructed by means of the inverse
stationary Stokes operator, as employed in the above proof, would also be applicable
in the proof of Theorem 5.6. Under the conditions of that theorem, however, such
a divt is in L(H*~Y(Q), H*(2)") generally for s € (%,%) only. For the proof of
Theorem 5.6, it is needed that also div™ € L(H~1(Q), H(Q)").

IThis regularity condition cannot be expected to hold for convex Q@ C R™ for n = 2,3 that have

an only piecewise smooth boundary as we erroneously suggested in [GSS14]. Such domains will be
addressed in Theorem 5.10 and Remark 5.11.
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THEOREM 5.10. Let Q C R? be a bounded, convex polygon. Then for s € (0,1)
S € Lis(%, x 75, (%5175 x 2Ly

Proof. Let

V)

HY(Q) := {U c HY(Q): |jv

2 2 (%)
) = @) + Z/ﬂ x — 22 dx < oo,

where z runs over the finite set of corners of the polygon.
Inside the proof of this theorem, we redefine

H*7H(Q) = [(HN(Q)/R), H(Q)/R)]5 (s € [0,2]),

and with that, redefine the spaces &5.

For even any bounded polygon without slits Q C R?, in [ASVS8S, eq. (3.2)] it was
shown that div € L£(H2(Q)2, H'(Q)/R). From this, one verifies that S € L(%* x
23, (%ﬁl_s x PL=%)") is valid for s € {0, 1}, meaning that it is valid for s € [0, 1].

Using that €2 is convex, in [KO76] it was shown that

(5.9) So € Lis(H*(Q)" x H'(Q)/R, H*(Q)" x H(Q)/R).

Now following the steps from the proof of Theorem 5.8, we conclude that S € Lis(%,S x
Py, (U3~ x 2L75)) for s € [0,1].

In view of the fact that the definitions of 7§ and PL=% incorporate the spaces
H?*71(Q) and H'~25(Q), respectively, the proof will be completed once we have shown

that

(A ()/R), H (2)/R)]3 = [(H'(Q)/R)', H'(Q)/R)]5 (s € (0,2]),

s
2
ie.,

[(H'(Q)/R)', H(Q)/R)]; ~ [(H'(Q)/R), H'(Q)/R)]; (s €[0,2).

s

In [ASVS88, Thm. 3.1}, a right-inverse for div was constructed, which we denote
here as dAiy—, that for s € (3,1) satisfies div' e L(H*(Q), H'*#(Q)?). Using div €
L(H?(Q)%, H'(Q)/R) and div € L(La(Q)%, (H'(Q)/R)’), we infer that

oot —t
|| lele v”[(Hl(Q)/R)/,FIl(Q)/R)]521 S || le U||f11+3(9)2 f, ||’U||Hé(Q)/]R

~ vl @)y @) /20

with which the proof is completed. 0

Remark 5.11. In view of the regularity result for the stationary Stokes operator
So given in [Dau89, Thm. 9.20], which generalizes (5.9) to the three-dimensional case,
it can be envisaged that a result such as Theorem 5.10 also holds on convex polytopes
Q in R3.

Remark 5.12. In view of the application of the obtained well-posedness results for
the instationary Stokes operator S for constructing an adaptive wavelet scheme, we

briefly discuss the construction of tensor product wavelet Riesz bases for the spaces
Uy and P25 for (5,0) € {(s,), (1 —s,B)}.
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If © (X) is a collection of temporal (spatial) wavelets that, when normalized in
the corresponding norm, is a Riesz basis for Ly (I) (H?$(Q)") and I;T&{&} (I) (L2(2)™),
then, properly normalized, the collection © ® ¥ is a Riesz basis for % .

Suitable collections © are amply available. The same holds true for ¥ when 2
is a polytope and 2¢ < %, i.e., when s € (i, %) For those values of s, ¥ can be a
collection of continuous piecewise polynomial wavelets.

The latter means an important step forward compared to our earlier results in
[GSS14]. There we established well-posedness as in Theorem 5.6 but for the cases
s € {0,1} only, which require continuously differentiable wavelets whose construction
is cumbersome on domains 2 that are not of product type. Moreover, the results
in [GSS14] were derived under a “full regularity” condition on the stationary Stokes
operator as imposed in Theorem 5.8.

Moving to the construction of a basis for the pressure space, if © (X) is a collection
of temporal (spatial) wavelets that, when normalized in the corresponding norm, is
a Riesz basis for Ly(I) (H*71(Q)) and ﬁé’zg}(f)’ (H'(Q)), then, normalized, the
collection © ® ¥ is a Riesz basis for 5. For ¢ € [0, 1], bases are amply available, for
Q) being a general polytope.

Similar to Remark 3.8 for the parabolic problem, thanks to the use of tensor
product bases, the instationary Stokes problem can be solved at an asymptotic error
versus work rate equal to solving the stationary Stokes problem.

Finally in this section we consider the case of having a possibly inhomogeneous

initial condition in (5.1). Similarly to Theorem 4.2, we have the next theorem.

THEOREM 5.13. Let s € [0, 3) be such that S € Lis(%S x 25, (02/;7‘q x PL=s))
(cf. Theorems 5.6, 5.8, and 5.10 and Remark 5.11). Then for f € (%Bl_s)’ and
g € (PL=5Y, and, for some e > 0, uo € (HA 2 75(Q)™), or even u, € (HE(Q)™)
when s = 0, a valid, well-posed weak formulation of the Stokes equations (2.4) with
initial condition u(a) =, reads as finding (u,p) € %3 x P} such that

(S(u,))(v.q) = £(v) — g(g) + / o (%) - {0, x)dx

Q
((v,q) € U3~ x P57°).

6. Instationary Navier—Stokes. Forn > 2, let 2 C R" be a bounded Lipschitz
domain, and —oo < a < < 0o. Given a constant v > 0, a vector field f on I x €,
and a function g on I x §2, we consider the instationary inhomogeneous Navier—Stokes
problem with no-slip boundary conditions and homogeneous initial condition to find
the velocities u and pressure p that satisfy

%fyAxu+u~qu+pr:f on I x Q,
divy<u=g¢g onl x{,

(6.1) u=0 onl x99,
u(e,’) =0 on €,
Jopdx =0.

With the trilinear form

(6.2) n(y,z,v) = // y - Vxz-vdxdt,
1Jo



2460 CHRISTOPH SCHWAB AND ROB STEVENSON

in variational form (6.1) reads as finding (u,p) in some suitable space H, that in-
corporates the homogeneous initial/boundary conditions for u and fQ pdx = 0, such
that

(6.3) NS(u,p)(v, ) := (S(u,p))(v,q) + n(w,u,v) = £(v) — g(q)

for all (v, ¢) from another suitable space K.
In this setting of having a nonlinear problem, we call the above space-time vari-
ational formulation well-posed when
1. NS: H D dom(NS) — K',
2. there exists a (u,p) € H such that (6.3) is valid for all (v,q) € K,
3. NS is contlnuously Frechét differentiable in a neighborhood of (u, p),
4. DNS(u,p) € Lis(H, K').
In view of constructing an efficient numerical solver of the space-time variational
problem, we aim also at the situation that
5. both H and K can be conveniently equipped with (wavelet) Riesz bases, or,
alternatively, with an infinite nested sequence of finite-dimensional subspaces.
We start with deriving upper bounds for the trilinear form n. For s > 0, let

Z5 = Lo(I; H**(Q)™) N H*(I; Loy (™).

For s € [0,1] and ¢ € {«, 8}, obviously %’ — Z~.

PROPOSITION 6.1. For s, 83,53 > 0 with s1 + so + s3 > "1'2, it holds that

(6.4) In(y, 2, V)| S lyll 2=

2l a3 1Vl 20

(ye 2%, ze Z>F2, ve 2s). Forn=2, (6.4) is also valid for so =0, s1+s3 > 1.
Proof. For p;, ¢; > 1 with Z?_l pi <1, Zf’ 1q < 1, Hélder’s inequality yields

z(t ")”quz(ﬂ)" v(t, )L, @ndt

y V«z - vdxdt’ / 1y (& )Ly, @z
<|yllz,, L, @ 2lL,, W, () WIVIL,, (1524, ()m)-
From [Ama00, Thm. 5.2], it follows that for s > 0, 0 € [0,1], r < (1 — 0)s,
(6.6) S — H"(I; H*(Q)").

The Sobolev embedding theorem shows that for p > 2 and r > % — %, or q > 2,
k € Ng, and t > n(% — %) + k (the latter with strict inequality when ¢ = oo and n is
even), it holds that

(6.7) H™(I) < Ly(I), H'(Q) — WFQ),
respectively. We infer that for k € Ny, p,q > 2 and 2 (% D5 <s,

(6.8) 5 s L(LWEQ)™).
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% and @ from the nonempty interval

(GGG

and apply (6.6) and subsequently (6.7).

We apply (6.8) to (6.5). For some &; € [s; — f2, 5], we take - = - :=
% — %ﬁ(s, — &) € [0, %] We select €; such that > . e; < > s — "TH, so that
Zle i = Z?:l % < 1, and such that ¢; > 0 with ¢; > 0 whenever s; > 0. Then,
for s; > 0, it holds that g(% — qi) + % - i = s; — & < 8, so that for k € Ny,
ity o Ly, (I; W(f(ﬂ)") by (6.8). For s; = 0, we have ¢; = 0, and so p; = ¢; = 2,
and thus 2%+% = 2% < Ly(I; H¥(Q)") = Ly, (I; WE(Q)™).

It remains to define ¢; that satisfy the above conditions. When for some i = 1,
S, > ”T”, then we take e, = s, — "TH, and for j # 1, €; = s;. When for all 4, s; < ”T”
we take £; = min(s;, (Z?:l s; — 22)/3). With this the proof of the first claim is
completed.

To show the second claim, we note that for s > 0,
Z° < HE(I; H*(Q)"),
which extends (6.6) to the special case 7 = £ and 6 = 1. To see this, let {#} and {0}

be a Riesz bases for Ly(I) and Ly(2)", such that {6/||0||zsr)} and {o/||o| g2syn }
are Riesz bases for H*(I) and H?*(Q)", which collections exist. Then

1
{0@ /01 lollmzey)? } and {60/ 1013 ) + 1130 }

are Riesz bases for H3 (I; H*(2)") and 2%, respectively. Now one infers the statement
from 2/[0 zr= (1) | zr2e (o < NONFre () + ol 2 (-
Furthermore, for n = 2, we have H3 (I; H*(Q)?) — L%(I;L%(Q)Q), and ob-

viously 22 < Lo(I; HY(Q)™). Taking p; = ¢; = % for i = 1,3, and py = g2 = 2,

—
one has Z?Zl i = Z§:1 é < 1 when s; + s3 > 1, which completes the proof of (6.4)
for the special case. ]

Indeed with § = s+ £, select r = 1

3

THEOREM 6.2. Let n =3 and s € (3,1], orn =2 and s € [3,1]. Then
(i) NS: s x P — (Us~° x 2L7*).
(ii) For (u,p) € %, x Pj, its Fréchet derivative is given by
DNS(u,p) = DNS(a): (u,p) = ((v,q) = S(u,p)(v, q)
+n(u, 1, v) +n(a,u,v))
and satisfies

(6.9) @~ DNS()—SeL (@/;,c(%; X Py (UL 93*8)')) .

Let, additionally, s be such that S € Lis(%y x &3, (02/[31_5 x PL=5)) (cf. Theo-
rems 5.6, 5.8, and 5.10 and Remark 5.11). Then
(iii) for (f,g) € (@/Bl_s X PL=5) sufficiently small,

(6.10) NS(u,p)(v,q) = £(v) —g(a) ((v.q) € %37 x 2,77,

has a unique solution (u,p) in some ball in %7 x 3”; around the origin, and
lullz: +lpllzy S M€l 22y + ol iy -
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(iv) DNS(u) € Lis(%; x 23, (%61—3 x PL=5Y) for sufficiently small u € %2.

Proof. Recall that S € L(%; x 23, (%ﬁl_g x PL=<Y) for ¢ € [0,1]. An application
of Proposition 6.1 with s1 = s, s0 = s — %, s3 = 1 — s shows that

(6.11) n(w,w,v)| < ufa,

wilarz IVl 1+

and so in particular [n(u,u,v)| < [Jul|,. vH%ﬁks, which implies (i).

From
n(u+h,u+h;)—n(u,u,-) =n(,u,) +n(u,h,-)+nlhh,-),

together with an application of (6.11), we arrive at the claimed expression for the
Fréchet derivative in (ii)

Also the second statement in (ii) is an easy consequence of (6.11).

To show (iii), we observe that from n(u, u,-)—n(w,w, ) = n(u—w,u,-)+n(w,u—
w,-) and (6.11), the nonlinearity is locally Lipschitz: With N(u)(v) := n(u,u,v) we
find

(6.12) [N () = N(W)ll 22y S (lallzg + wllz;)

|lu— W”%a .

Now using the additional assumption, the statement about the solvability follows by
an application of Banach’s fixed point theorem, e.g., see [Tem79] or [GSS14, Lem. 5.1].
Assertion (iv) follows from (6.9) for sufficiently small u in %?. 0

Considering our desirata (1)—(5), we conclude that (1), (3) are satisfied, and (2),
(4) are valid under a small data assumption. For n = 2, (5) is satisfied, but not for
n = 3. The condition s > % imposes piecewise smoothness on trial spaces, and in
addition global C* regularity.

For existence results, i.e., (2), for large data, we refer to the extensive literature on
this topic. Since usually these results concern only the velocities in a divergence-free

setting, we note the following: Let u e {w € Z5: I ® divw = 0} be such that
(6.13) NS(&,0)(v,0) = f(v) (ve{we % *: Iadivw=0}),

with s € [0, 1] being such that S € Lis(%; x &3, (@/Bl_s x PL=%)"). The last property
implies that
d
of sup (v,p)

i e >0,
0#PELS otvew) HVH%I*S Il 2

which together with (6.13) implies the existence of a (unique) p € &5 with d(v,p) =
f(v) — NS(u,0)(v,0) for all v € ?/51_37 so that (@, p) is a solution of (6.10).

In the next theorem, we show that under a (moderate) regularity condition on u,
but without a smallness assumption, it holds that DNS(u) € Lis(%; x &3, (02//3175 X
PL=5Y) de., (4) is valid.?

2We are embarrassed to admit that Theorem 5.3, Remark 5.4, and Theorem 5.7 from [GSS14]
are not correct as stated. Viewing u +— - Vxu+u-Vxu as a first order perturbation of the spatial
differential operator u — —vAxu is valid only under the provision of substantial extra regularity
@€ Loo(I; WL (Q)™).
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THEOREM 6.3. Let |I| < oo, and let s € [L,1] be such that S € Lis(%S x
25, (%5175 x PL=5Y) and, for ¢ € [0,s], D(A%) ~ {u € H(Q)": divu = 0},
with A as defined in Proposition 5.5. For some 5 > %, let u € %_. Then DNS(u) €
Lis(%; x 75, (?/},_}7S x PL=s).

Remark 6.4. In the cases that we verified S € Lis(%; x 3, (%Bl_s X PL=5)),
we did this under assumptions that guarantee D(A3) ~ {u € HS(Q)": divu = 0}
for ¢ € [0, s].

Remark 6.5. Let |I| < oo, andlet s € (%,1] besuchthat S € Lis(%; x 25, (%3~
x P1=%)") and, for ¢ € [0,5], D(A3) ~ {u € H(Q)": divu = 0}. Then any solution
(u,p) € %2 x P5 of (6.10) is locally unique. Indeed, by Theorem 6.3, we have
DNS(u) € Lis(%; x P, (02161_5 x 21=5)) and (6.9) shows that u — DNS(u) is
continuous, so that the statement is a consequence of the implicit function theorem.
This statement about local uniqueness extends to n = 2 and s = % at solutions (u, p)
with u € % for some 5 > 1.

Proof. From section 5, in particular, (5.2), (5.5), and (5.8), recall the definitions
of ¢(, ), C, and % (div0). We define (6C(0)u)(v) :=n(a,u,v) + n(u, a, v).

The general theory about the well-posedness of saddle-point problems shows that
S € Lis(%y x 75, (%ﬁl_s i@é*s)') is equivalent to S € ﬁ(%of X 25, (?//81_S x PL=s)),
CeLis{we s (I®div)iw =0}, ({w e %BI_S: (I ® div)w = 0})’), and two inf-
sup conditions (cf. proof of Theorem 5.6). So the only thing to verify is whether the
condition involving C is satisfied with C' reading as C' + éC(u).

The assumption that D(A%) ~ {u € H*(Q)": divu = 0} for ¢ € [0,s] implies
that

(6.14) (we: (Iediv)w =0}~ %5 (div0)
(cf., e.g., [DS10, Thm. 3.2]), so that it suffices to prove
(6.15) C +6C(u) € Lis(%; (div0), %, *(div0)’) .

For k € R, let h, denote the operator of multiplication by the exponential function
t — €. Due to the assumption |I| < oo, for v € {«a, 8} and for every £ € R it
holds that A, € Lis(%(div0), %< (div0)) (s € [0,1]). Also (5C(0)(heu))(h—nv) =
(6C(a)u)(v), and, with C,; := C + kI, there holds (C(h,u))(h_,v) = (Cyu)(v), so
that

(C+6C(m))(u)(v) = (C+6C () (h_pu)(hyv) (u€ % (div0),v € %, *(div0)) .
The claim (6.15) then follows if for sufficiently large x > 0 it holds that
(6.16) Cy +6C(1) € Lis(% (div 0), %, (div0)").

To prove (6.16), we first consider the case that s € [3,1). The case s = 1 will
be discussed separately. Taking e € (0,5 — %) and ¢ < 1 — s, thanks to 5,5 > 3,
1—s—¢2>0,and 5 > %, two applications of Proposition 6.1, together with (6.14),
show

(GC@u)(v)] S Il lallz: @iv o) 1VIl72 -5 @iv o)
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ie.,
(6.17) 5C (1) € L(%g(div0)), %, ~*~¢(div0)").

In other words, 6C(u) is a compact perturbation of C,. 3 ~
Similarly to (5.7), for £ > 0 and < € [0,1], C, € Lis(%s (div0), %, *(div0)’).
For f € Ly(I; HO(div 0;Q)) ~ @Zﬁo(div 0), u:= C;'f € Z}(div0) satisfies

// vVxu: Vyv+ku-vdxdt = //fv—— v dxdt (VGLQ(I;fIO(diVO;Q))) .

Substituting v = u, and using that — [, [, 22 - udxdt = —1 [, %Hu”iz(ﬂ)ndt <

f%”ll( )L, @y = 0, we find that sllull7, 1.1, < €.z [0l Lo 1 Lo @)m) o,
or Kk >0,

—1
(6.18) 1C M £ 1:00 (v 0:0)), L (10 v 0:020)) S

_ 1 -1 _ . _
From C;' = C;' — Cy 'kIC, Y, we infer sup,. ||C,; 1||L(?Z§(div0)',@2;(div0)) < 0.
.. _ -1 _ —1 _
Similarly, C;! = Cy ' — C;1kICy " shows sup,.~q [|Cy; 1”5(92151((11\,0)/7@;5((11‘, 0y < 00
By an interpolation argument, we arrive at

(6.19) sup Ssup HCN Hz(agzl S (div 0), 75 (div 0)) < O°-
k>0 ¢€[0,1] «

€[0,1]. From s+e—1=¢e-0+(1—¢)(:2—1)
and s=¢-0+(1— 5) , an apphcatlon of the Riesz—Thorin theorem shows that

-1 1
ICx ||£(?2$*5*5(div0)’»”/?§(div0)) Sy (e ||£(L2 (1;F0 (div 0;2)), Lo (1; 0 (div 0;2)))

x[lIesH e
L

11— _ 2 .
Uy 1TF(div0) %' ° (div0))

(6.20)

From (6.18) and (6.19) we infer that the right-hand side can be made arbitrarily small
by taking x large. Now writing C,, + 6C(u) = C,(I + C;16C(u)), and combining
the latter result with (6.17) and (6.19), the proof of (6.16) for the case s € [3,1) is
completed.
Finally, for the case s = 1, we write C,, + 6C(a) = (I + 6C(u)C;1)C,. Taking
€ (0,5 — %), two applications of Proposition 6.1, together with (6.14), show that

(GC@u)(v)] S Il lallz:-< iy o) IVllzoaiv o)

ie.,

8C(u) € L(%,5(div0)), %3 (div 0)).

Similarly to (6.20), one infers that ||C;1||£((¢§(divo)) @1~ (divo)) can be made arbi-
trarily small by taking x large, from which the proof for this case follows. ]
In Theorem 6.3 we imposed . € %, for some 5 > % to ensure that §C(u)

is a perturbation of strictly lower order to the instationary Stokes operator. The
arguments employed in [Fonl0] indicate that for n = 2 and I being the half-line
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1 —
(o, 00), (6.13) defines a diffeomorphism from {w € %7 : I ® divw = 0} to {w €
1

%g: I@divw = 0} (where here the homogeneous condition at time ¢t = f is void
since 8 = 00). In other words, it seems that in space dimension n = 2 the additional
regularity condition € %7 for some 5 strictly larger than % can be avoided.

So far we considered the instationary Navier—-Stokes equations with homogeneous
initial conditions. The approach of appending inhomogeneous conditions as natural
boundary conditions as employed for the Stokes problem in Theorem 5.13 is not

applicable because it requires searching the solution (u,p) € %° x ﬂg for some
s < %, whereas we established in Theorem 6.2 that NS : % x Ph— (?/517S x PL=s)
forsz%ifn:2andf0rs>%ifn:3.

Therefore, let g denote a lifting of the given, inhomogeneous initial datum ug to
the space-time cylinder I x Q. Then, writing the solution in the form (u + ug,p), u
satisfies homogeneous initial conditions. One infers that with

S(u,p)(v,q) :=S(u,p)(v,q) + n(ag,u,v) + n(u,ap, v),
NS(u,p)(v,q) = S(u,p)(v,q) + n(u, u,v),

the pair (u,p) solves formally

(6.21) NS(u,p)(v,q) = £(v) — g(q) — c(To,v) — d(g, o) — n(@—, Gy, V)

for all test functions (v, q).
The same proof that showed Theorem 6.3 also shows the following.

PROPOSITION 6.6. Let |I| < oo, and let s € [3,1] be such that S € Lis(%; x
)

3”5,(%5175 x P1=%Y) and, for ¢ € [0,s], D(A%) ~ {u € H(Q)": divu = 0},
with A as defined in Proposition 5.5. For some 5 > %, let ug € %,;. Then S e
Lis(Us x P, (Uy > x 2L75)).

Again, the arguments applied in [Fonl0] indicate that for n = 2 and I = («, 00)
the condition g € %, for some § > 7 can be omitted.

Remark 6.7. Alternatively, by applying the technique of Theorem 6.2, the condi-
tion |I| < oo can be replaced by the condition of Gy € %, being sufficiently small.
This setting allows s = s = % when n = 2.

With these results at hand, the analysis for the operator NS given in Theorems 6.2
and 6.3 can be repeated for NS. In applications, the construction of the required lifting
of ugy to Gy € %2 can be nontrivial.

7. Conclusion. We proposed well-posed space-time variational saddle-point for-
mulations of instationary incompressible Stokes and Navier—Stokes equations, in scales
of fractional Bochner—Sobolev spaces. A novel aspect is that the formulations do not
require a full-regularity condition on the stationary Stokes operator and therefore
apply on general bounded Lipschitz spatial domains.

The variational formulations can be the basis of space-time adaptive numerical
solution methods. In particular, for Stokes and, when n = 2, Navier—Stokes equations,
all arising temporal and spatial Sobolev spaces can be conveniently equipped with
bases of continuous piecewise polynomial wavelets. By equipping the arising Bochner
spaces with the resulting tensor product bases, the whole time evolution problem can
be solved by an adaptive wavelet method at the best possible convergence rate, and
for Stokes, at linear cost. Under mild (Besov) smoothness conditions, this rate is
equal as when solving one instance of the corresponding stationary problem.
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