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Abstract We construct a wavelet basis on the unit interval with respect to which both

the (infinite) mass and stiffness matrix corresponding to the one-dimensional Laplacian

are (truly) sparse and boundedly invertible. As a consequence, the (infinite) stiffness

matrix corresponding to the Laplacian on the n-dimensional unit box with respect to

the n-fold tensor product wavelet basis is also sparse and boundedly invertible. This

greatly simplifies the implementation and improves the quantitative properties of an

adaptive wavelet scheme to solve the multi-dimensional Poisson equation. The results

extend to any second order partial differential operator with constant coefficients that

defines a boundedly invertible operator.
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1 Introduction

Let us denote I := (0, 1) and � := In. In [9], we developed an adaptive tensor product

wavelet method that for given f ∈ H−1(�) solves the problem of finding u ∈ H1
0 (�)

such that

a(u, v) :=

Z
�
c0uv +

nX
m=1

cm∂mu∂mv = f(v) (v ∈ H1
0 (�)), (1)
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where c0 ≥ 0 and cm > 0 (m = 1, . . . , n) are constants. Actually, there we allowed

homogeneous Dirichlet boundary conditions on only part of the boundary, but, as we

will see, in this paper we need them on the whole of the boundary. General, possibly

non-symmetric second order partial differential operators with constant coefficients will

be considered at the end of Sect. 3.

Using that

H1
0 (�) = H1

0 (I)⊗ L2(I)⊗ · · · ⊗ L2(I) ∩ · · · ∩ L2(I)⊗ · · · ⊗ L2(I)⊗H1
0 (I),

we constructed a Riesz basis for H1
0 (�) by tensorizing univariate Riesz bases of wavelet

type. Indeed, if Ψ = {ψλ : λ ∈ ∇} is a Riesz basis for L2(I) that, when normalized

in H1(I), is a Riesz basis for H1
0 (I), then, when normalized in H1(�), Ψ ⊗ · · · ⊗ Ψ

is a Riesz basis for H1
0 (�). This holds true with Riesz constants that are bounded

uniformly in c0 ≥ 0 and cm > 0 (m = 1, . . . , n), when we equip H1
0 (�) with the energy

norm ||| · ||| = a( · , · )
1
2 . These Riesz constants are even bounded uniformly in the space

dimension n if (and only if) Ψ is an orthonormal basis for L2(I).

Denoting the resulting Riesz basis for H1
0 (�) as

Ψ := {ψλ := ⊗nm=1ψλm
/|||⊗nm=1ψλm

||| : λ ∈ ∇ := ∇n},

by writing u = u>Ψ :=
P

λ∈∇ uλψλ, and with f := [f(ψλ)]λ∈∇, an equivalent

formulation of (1) is

Au = f . (2)

The stiffness matrix A with respect to Ψ reads as

A = D−1(c0 ~M ⊗ · · · ⊗ ~M + c1 ~A⊗ ~M ⊗ · · · ⊗ ~M + · · ·+ cn ~M ⊗ · · · ⊗ ~M ⊗ ~A)D−1,

where D := diag[|||⊗nm=1ψλm
||| : λ ∈ ∇], and

~A :=

»Z
I
ψ̇µψ̇λ

–
λ,µ∈∇

and ~M :=

»Z
I
ψµψλ

–
λ,µ∈∇

are the one-dimensional (unnormalized) stiffness and mass matrices, respectively. Here,

and on other places, a (double) “dot” on top of a univariate function denotes its

(second) derivative. A (double) “dot” on top of a linear space of univariate functions will

denote the linear space of (second) derivatives of these functions. The aforementioned

results about Ψ being a Riesz basis for H1
0 (�) equipped with ||| · ||| are equivalent to the

matrix A defining a boundedly invertible mapping on `2(∇), with a condition number

that is bounded uniformly in c0 ≥ 0 and cm > 0 (m = 1, . . . , n) (and in n if and only

if Ψ is L2(I)-orthonormal). Another equivalent property is that for v ∈ `2(∇) being

an approximation to u, it holds that

|||u− v>Ψ ||| h ‖u− v‖`2(∇).

Here and in the remainder, with C . D we will mean that C can be bounded by a

multiple of D, independently of parameters on which C and D may depend, possibly

with the exception of the space dimension n. Obviously, C & D is defined as D . C,

and C h D as C . D and C & D.

In [9], we solved (2) with an adaptive wavelet Galerkin method introduced in [3]

and later modified in [10]. Given a finite set Λ ⊂ ∇, let IΛ : `2(Λ) → `2(∇) denote the

trivial embedding, so that its adjoint PΛ : `2(∇) → `2(Λ) is the restriction of a vector
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to its indices in Λ. With AΛ := PΛAIΛ and fΛ := PΛf , the solution of AΛuΛ = fΛ is

known as the Galerkin approximation to u from `2(Λ). The idealized adaptive wavelet

Galerkin scheme reads as follows:

% Let µ ∈ (0, 1) be a sufficiently small parameter

Λ0 := ∅, uΛ0 := 0,

for i = 1, 2, . . . do

find the smallest Λi+1 ⊃ Λi with ‖PΛi+1(f −AuΛi
)‖ ≥ µ‖f −AuΛi

‖
solve AΛi+1uΛi+1 = fΛi+1

enddo

Note that the residual f − AuΛi
plays the role of an a posteriori error estimator to

guide a proper expansion of the set Λi.

The above scheme cannot be performed exactly. First of all, generally f will be

infinitely supported and thus has to be approximated. Secondly, with the available uni-

variate wavelet bases, either ~M or ~A or both are not sparse, and so generally any column

of A has infinitely many non-zeros. Thanks to the properties of wavelets, however, as

being smooth and having vanishing moments, the sizes of the entries of ~M and ~A, and

thus of A do decay rapidly away from the diagonal. This property has been used to de-

sign an adaptive approximate matrix-vector multiplication routine APPLY in which

the accuracy with which any column is approximated increases with the modulus of

the corresponding entry in the vector. This APPLY routine is used both for approx-

imate computation of the residual f −AuΛi
and for the approximate multiplication

with AΛi+1 for the iterative solution of the Galerkin problem AΛi+1uΛi+1 = fΛi+1 .

Concerning the latter, note that generally the number of non-zero entries in AΛi+1 is

not of the order of #Λi+1.

The resulting practical scheme was shown to converge with the best possible rate

in linear complexity. Moreover, since tensor product wavelets are applied, this rate is

independent of the space dimension ([8]). If (and only if) Ψ is L2(I)-orthonormal, even

the constant factor in the error bound that the adaptive scheme may lose compared

to the corresponding best N -term approximations is independent of n. In future work,

we will generalize the approach to non-product domains using domain decomposition

techniques.

Although the scheme has optimal computational complexity, quantitatively the

application of the APPLY routine is very demanding, where this routine is also not

easy to implement. This is the motivation to develop in this paper a univariate wavelet

basis Ψ such that both ~A and ~M , and thus A are sparse. In this case, A can be applied

exactly to a (finitely supported) vector at a cost that is linear in its support length.

Since Ψ will be a Riesz basis for L2(I) and, when normalized in H1(I), a Riesz basis

for H1
0 (I), the bi-infinite matrix A, i.e., the representation of the operator defined in

(1) with respect to the normalized tensor product basis, will be a boundedly invertible

mapping, uniformly in c0 ≥ 0 and cm > 0 (m = 1, . . . , n). Since Ψ , however, will not

be L2(I)-orthonormal, the condition number of A will grow with the space dimension

n.

Remark 1 We emphasize that with above wavelets, for any subset Λ ⊂ ∇, A|Λ×Λ

is sparse and well-conditioned, with a condition number bounded by that of A. As a

consequence, these wavelets may also find their application in non-adaptive sparse grid

algorithms (e.g. see [1]). Indeed, with the usually applied hierarchical basis, neither

A|Λ×Λ is sparse, nor its condition number is bounded uniformly in Λ.
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Remark 2 When having univariate wavelets that lead to sparse ~A and ~M , the stiffness

matrix A corresponding to (1) is sparse because the coefficients ci are constants. For

smooth, non-constant coefficients, the additional non-zeros outside the sparsity pattern

of a constant coefficient operator will be much smaller, depending on the levels of the

wavelets involved. For the residual computation inside the adaptive wavelet scheme,

which is the quantitatively most demanding part, it can be envisaged that they can be

ignored, possibly apart from those corresponding to some coarsest levels.

Remark 3 Instead of being satisfied with a stiffness matrix A that is sparse, one may

think of searching a wavelet basis of H1
0 (�) such that the stiffness matrix is diagonal.

This would mean that if f has a finite support Λ ⊂ ∇, then the exact solution of (1) is

in the span of the wavelets with indices in Λ. This seems hard, or perhaps impossible to

realize on a bounded domain and for dimensions n ≥ 2. We refer to [4] for a discussion

of related issues on the domain R2.

Of course, in order to end up with a diagonal stiffness matrix, one can tensorize the

univariate basis {
√

2 sin(kπx) : k ∈ N0}. As shown in [8], with this approach, however,

even for smooth f generally only low convergence rates are possible.

2 A first attempt: Continuous piecewise smooth wavelets?

We will search a collection of univariate wavelets Ψ = {ψλ : λ ∈ ∇} such that, with

|λ| ∈ N0 denoting the level of ψλ or that of λ,

(a). diam suppψλ . 2−|λ|,
(b). supj,k∈N0

#{|λ| = j : [k2−j , (k + 1)2−j ] ∩ suppψλ 6= ∅} <∞,

(c). Ψ is Riesz basis for L2(I),

(d). {ψλ/‖ψ̇λ‖L2(I) : λ ∈ ∇} is a Riesz basis for H1
0 (I),

(e).
R
I ψ̇λψ̇µ = 0 when ||λ| − |µ|| > M ,

(f).
R
I ψλψµ = 0 when ||λ| − |µ|| > M ,

where M ∈ N0 is some constant, that later will be chosen to be 1. As a consequence,

with respect to a level-wise partition of the wavelets, ~A and ~M will be block tridiagonal

with, because of (a) and (b), sparse non-zero blocks. Note that under the assumptions

(a) and (b), ~A and ~M are sparse if and only if (e) and (f), respectively, are valid. We will

refer to the properties (a) and (b) by saying that the wavelets are (uniformly) local and

that the collection of wavelets on each level is (uniformly) locally finite, respectively.

Proposition 1 If, in addition to (a) – (d), each wavelet is piecewise smooth with

bounded piecewise first and second derivatives, then (e) requires that they are globally

in C1.

Proof Suppose the statement is wrong. For some µ ∈ ∇, let ψ̇µ have a jump in some

y ∈ I. Then there exists a K = K(µ) ≥ M + |µ| such that for all λ ∈ ∇ with |λ| > K

and ψλ(y) 6= 0, it holds that suppψλ ⊂ I and ψµ is smooth on suppψλ\{y}, where we

used that ψµ is piecewise smooth. Then by (e), for those λ we have

0 =

Z
I
ψ̇λψ̇µ = (ψ̇µ(y−)− ψ̇µ(y+))ψλ(y)−

Z
I
ψ̈µψλ,

and so (µ is fixed),

|ψλ(y)| .
Z
I
|ψλ| .

p
2−|λ|. (3)
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Writing u ∈ L2(I) as u =
P
λ∈∇ cλψλ, (c) shows that ‖u‖2L2(I)

h
P
λ∈∇ |cλ|

2.

When u ∈ H1
0 (I), then (d) shows that this expansion converges also in H1(I), and thus

in L∞(I), i.e., that

u(y) =
X

{λ∈∇ : ψλ(y) 6=0}
cλψλ(y).

Now by using (3) for |λ| > K, and the fact that |ψλ(y)| < ∞ for each of the

finitely many other λ ∈ ∇, an application of the Cauchy-Schwarz inequality shows

that |u(y)| . ‖u‖L2(I), which inequality, however, is not valid on H1
0 (I). We conclude

that the wavelets have to be in C1.

Remark 4 Proposition 1 confirms the well-known fact that the hierarchical basis is not

a Riesz basis for L2(I). Indeed, this basis of continuous piecewise linears satisfies (a),

(b), (d) and (e), where ~A is even diagonal, and thus it cannot satisfy (c).

Remark 5 Assuming (a), (b), (c), (e), and that each wavelet is piecewise smooth

with bounded piecewise first and second derivatives, the above proof also shows that

{ψλ/‖ψλ‖H1(I) : λ ∈ ∇} can be a Riesz basis for H1(I) (instead of H1
0 (I)) only if

ψ̇µ(0) = ψ̇µ(1) = 0 for all µ ∈ ∇. Indeed, suppose ψ̇µ does not vanish at the boundary,

say at 0. Then there exists a K ≥ M + |µ| such that for all λ ∈ ∇ with |λ| > K and

ψλ(0) 6= 0, it holds that suppψλ ⊂ [0, 1) and ψµ is smooth on suppψλ. Then by (e),

for those λ we have

0 =

Z
I
ψ̇λψ̇µ = −ψ̇µ(0)ψλ(0)−

Z
I
ψ̈µψλ,

and the same arguments as in the proof of Proposition 1 lead to a contradiction.

In view of having a rapidly converging wavelet expansion, for a wavelet basis for

H1(I) the conditions ψ̇µ(0) = ψ̇µ(1) = 0 are not desirable. In view of this, we restrict

ourselves to the task of constructing a collection Ψ such that (a) – (e) are valid, i.e.,

in particular such that {ψλ/‖ψ̇λ‖L2(I) : λ ∈ ∇} is a Riesz basis for H1
0 (I).

3 Biorthogonal multi-resolution analyses and wavelets

In order to construct wavelets that, properly scaled, generate Riesz bases for a range

of Sobolev spaces, in particular for L2(I) and H1
0 (I) (cf. (c) and (d)), we will use the

following well-known theorem (cf. [5,7,2]).

Theorem 1 (Biorthogonal space decompositions) Let

V0 ⊂ V1 ⊂ · · · ⊂ L2(I), Ṽ0 ⊂ Ṽ1 ⊂ · · · ⊂ L2(I)

be sequences of primal and dual spaces such that

dimVj = dim Ṽj <∞ and αj := inf
0 6=ṽj∈Ṽj

sup
0 6=vj∈Vj

|〈ṽj , vj〉L2(I)|
‖ṽj‖L2(I)‖vj‖L2(I)

& 1. (4)

In addition, for some 0 < γ < d, let

inf
vj∈Vj

‖v − vj‖L2(I) . 2−jd‖v‖Hd(I) (v ∈ Hd(I)) (Jackson estimate),
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and

‖vj‖Hs(I) . 2js‖vj‖L2(I) (vj ∈ Vj , s ∈ [0, γ)) (Bernstein estimate),

where, for s ∈ [0, d], Hs(I) = [L2(I),Hd(I)]s/d, and let similar estimates be valid at the

dual side with ((Vj)j , d, γ,Hs(I)) reading as ((Ṽj)j , d̃, γ̃, H̃s(I)).
Then, with Φ0 = {φ0,k : k ∈ I0} being a basis for V0 (scaling functions) and Ψj =

{ψj,k : k ∈ Jj} (j ∈ N) being uniform L2(I)-Riesz bases for Wj := Vj ∩ Ṽ
⊥L2(I)

j−1
(wavelets), for s ∈ (−γ̃, γ) the collection

Φ0 ∪ ∪j∈N2−sjΨj

is a Riesz basis for Hs(I), where Hs(I) := (H̃−s(I))′ for s < 0.

In view of the notations introduced earlier, we denote (j, k) also as λ, where |λ| = j,

φ0,k as ψ0,k and I0 ∪ ∪j∈NJj as ∇.

Remark 6 When dimVj = dim Ṽj < ∞, the condition αj & 1 in (4) is equivalent to

the property that for uniform L2(I)-Riesz bases Φj and Φ̃j for Vj and Ṽj , respectively,

〈Φj , Φ̃j〉−1
L2(I)

exists with a uniformly bounded spectral norm, or, equivalently, that

Vj and Ṽj can be equipped with biorthogonal uniform L2(I)-Riesz bases. In cases

where these biorthogonal bases can be chosen to be both uniformly local, then under

some mild additional condition, both the (primal) wavelets and the corresponding

dual wavelets can be selected to be uniformly local (cf. [6]). In the application of

Theorem 1 that we study in this paper, only the primal scaling functions and wavelets

will be uniformly local.

4 Biorthogonal cubic Hermite wavelets

We shall select (Vj)j , (Ṽj)j that satisfy the conditions of Theorem 1 for some γ > 1,

where Hd(I) = H1
0 (I) ∩ Hd(I). In addition, (Vj)j , (Ṽj)j will be selected such that

Vj ⊂ C1(I) ∩H1
0 (I) and

Vj + V̈j ⊂ Ṽj+1. (5)

As a consequence, using that for |µ| > 0, ψµ ⊥L2(I) Ṽ|µ|−1, for |µ| > |λ|+ 1 we haveZ
I
ψλψµ = 0,

Z
I
ψ̇λψ̇µ = −

Z
I
ψ̈λψµ = 0,

i.e., (e) and (f) are valid with M = 1.

We will take Vj to be the space of cubic Hermite splines satisfying first order

homogeneous Dirichlet boundary conditions with respect to the j + 1 times dyadically

refined interval I = (0, 1), and Ṽj to be the space of piecewise cubics with respect to

the j times dyadically refined I, i.e.,

Vj :=

2j+1−1Y
k=0

P3(k2
−(j+1), (k + 1)2−(j+1)) ∩ C1(I) ∩H1

0 (I), (6)

Ṽj :=

2j−1Y
k=0

P3(k2
−j , (k + 1)2−j). (7)
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Clearly, with this choice (5) is satisfied (actually even Vj + V̈j = Ṽj+1).

The dimension of Vj is 4 × 2j+1 − (2j+1 − 1)2 − 2 = 2j+2 = 4 × 2j , being the

dimension of Ṽj . The second statement of the following theorem will be proved in

Sect. 7.

Theorem 2 It holds that dimVj = dim Ṽj and

inf
j∈N0

inf
0 6=ṽj∈Ṽj

sup
0 6=vj∈Vj

|〈ṽj , vj〉L2(I)|
‖ṽj‖L2(I)‖vj‖L2(I)

> 0.

In Sect. 5, we will construct uniform L2(I)-Riesz bases Ψj for Wj = Vj ∩ Ṽ
⊥L2(I)

j−1 .

With Φ0 being some basis for V0, an application of Theorems 1 and 2 yields the

following result.

Corollary 1 Let Hs(I) := [L2(I), H
4(I) ∩ H1

0 (I)]s/4 for s ∈ [0, 4] and Hs(I) :=

(H−s(I))′ for s < 0. Then for s ∈ (− 1
2 ,

5
2 ), the collection Φ0 ∪ ∪j∈N2−sjΨj is a

Riesz basis for Hs(I).

Remark 7 It is known (e.g. see [11]) that for s ∈ [1, 4], Hs(I) = Hs(I)∩H1
0 (I) and that

for s ∈ [0, 1]\{ 1
2}, H

s(I) = Hs
0(I), the latter space being equal to Hs(I) for s ∈ [0, 1

2 ).

The wavelets that we are going to construct in Sect. 5 will be uniformly local

and will be such that the collections Ψj that span the spaces Wj = Vj ∩ Ṽ
⊥L2(I)

j−1
are uniformly locally finite, i.e., the conditions (a) and (b) formulated in the previous

section are valid. Since by construction (e) and (f) hold, and (c) and (d) are special

cases of Corollary 1, we conclude that all conditions (a)–(f) formulated in Sect. 2 are

valid.

Note that due to the absence of boundary conditions incorporated in the definition

of Ṽj , all wavelets, i.e., any element of Ψj , has 4 vanishing moments. This is very

convenient for constructing sparse approximations to f = [f(ψλ)]λ∈∇.

Remark 8 In addition to (e) and (f) we haveZ
I
ψλψ̇µ = 0 when ||λ| − |µ|| > 1. (8)

For |λ| − |µ| > 1, this follows from the fact that V̇j ⊂ Ṽj+1, and for |µ| − |λ| > 1

by additionally using integration by parts and the first order homogeneous Dirichlet

boundary conditions. A consequence is that for any constants (aα,β)|α|,|β|≤1, the rep-

resentation, with respect to the properly scaled wavelet basis Ψ , of the problem of

finding u ∈ H1
0 (�) such that for given f ∈ H−1(�),Z

�

X
|α|,|β|≤1

aα,β∂
αu∂βv = f(v) (v ∈ H1

0 (�)), (9)

is of the form

Au = f , (10)

where A is sparse. Indeed, also first order partial derivatives or mixed second order par-

tial derivatives lead to a tensor product of sparse matrices. The matrix A is boundedly

invertible whenever the constants (aα,β)|α|,|β|≤1 are such that (9) defines a boundedly

invertible operator between H1
0 (�) and H−1(�). For cases where A is not symmetric

positive definite, a possibility to solve (10) is to apply the adaptive wavelet Galerkin

scheme to the normal equations.
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Remark 9 Besides the cubic Hermite splines, we also tried the following maximally

smooth spline options for the sequence (Vj)j :

(i). Vj :=

2j+1−1Y
k=0

P2(k2
−(j+1), (k + 1)2−(j+1)) ∩ C1(I) ∩H1

0 (I),

(ii). Vj :=

2j+1−1Y
k=0

P3(k2
−(j+1), (k + 1)2−(j+1)) ∩ C2(I) ∩H1

0 (I),

(iii). Vj :=

2j+1−1Y
k=0

P4(k2
−(j+1), (k + 1)2−(j+1)) ∩ C3(I) ∩H2

0 (I).

In view of (5), in case (i) we have that V̈j =
Q2j+1−1
k=0 P0(k2

−(j+1), (k+1)2−(j+1)) and

Vj ∩ V̈j = {0}. When choosing Ṽj+1 = Vj + V̈j , it holds that dimVj = 2j+1 = dim Ṽj ,

but as one may verify, αj from (4) is zero for any j ∈ N0. Since αj & 1 is a necessary

condition for the wavelets to generate a Riesz basis for L2(I), with this choice (a) – (f)

cannot be realized.

In case (ii), we have that V̈j =
Q2j+1−1
k=0 P1(k2

−(j+1), (k + 1)2−(j+1)) ∩ C(I) and

Vj∩V̈j = {0}. When choosing Ṽj+1 = Vj+V̈j , we have dim Ṽj = 2(2j+1) = dimVj+1,

and Theorem 1 cannot be applied.

In case (iii), we have that V̈j ( Zj :=
Q2j+1−1
k=0 P2(k2

−(j+1), (k+1)2−(j+1))∩C1(I)

and Vj∩V̈j ⊂ Vj∩Zj = {0}. Choosing Ṽj+1 = Vj+V̈j , we have dimVj = 2j+1 = dim Ṽj ,

but, as we verified numerically, αj ↓ 0 for j → 0.

5 Construction of the wavelets

With Vj and Ṽj from (6) and (7), we construct uniform L2(I)-Riesz bases Ψj+1 for

Vj+1 ∩ Ṽ
⊥L2(I)

j , which are also uniformly local and uniformly locally finite.

Let φ(1), φ(2) ∈ P3(−1, 0)× P3(0, 1) ∩ C1(−1, 1) be defined by

φ(1)(±1) = 0, φ̇(2)(±1) = 0, (11)

φ(1)(0) = 1, φ̇(2)(0) = 1,

φ̇(1)(0) = φ̇(1)(±1) = 0, φ(2)(0) = φ(2)(±1) = 0.

Integer translates of φ(1), φ(2) span the space of C1 piecewise cubics with respect to

the pieces [k, k + 1] (k ∈ Z). With

φ
(i)
j,k :=

√
2j+1 φ(i)(2j+1 · −k),

the collection

Φj := {φ(1)
j,k : k ∈ {1, 2, . . . , 2j+1 − 1}} ∪ {φ(2)

j,k |I : k ∈ {0, 1, . . . , 2
j+1}} (12)

is a uniform L2(I)-Riesz basis for Vj from (6).

We construct 4 types of “mother wavelets”. These functions are C1 piecewise cubics

with respect to the pieces [k, k + 1
2 ] (k ∈ 1

2Z), i.e., they are in the span of {φ(i)(2 ·
−k) : i ∈ {1, 2}, k ∈ Z}, and they are L2(R)-orthogonal to

Q
k∈2Z P3(k, k + 2).
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Fig. 1 The wavelets ψ(1), ψ(2), ψ(3) and ψ(4), normalized in L2.

k −3 −2 −1 0 1 2 3

a
(1)
k − − − − − 2

15
4
15

− 2
15

b
(1)
k − − − − −1 0 1

a
(2)
k − − − − 7

39
0 − 7

39

b
(2)
k − − − − 1 44

13
1

a
(3)
k − 4595

13728
7
65

− 18737
68640

1 − 18737
68640

7
65

− 4595
13728

b
(3)
k − 68741

22880
− 69

40
− 204701

22880
0 204701

22880
69
40

68741
22880

a
(4)
k

417
22880

− 7
2340

5443
205920

0 − 5443
205920

7
2340

− 417
22880

b
(4)
k

723
4576

1
8

8153
13728

1
2

8153
13728

1
8

723
4576

Table 1 Coefficients for the construction of wavelets.

We seek the first two types of the form

ψ(1) :=
X3

k=1
a
(1)
k φ(1)(2 · −k) +

X3

k=1
b
(1)
k φ(2)(2 · −k),

ψ(2) :=
X3

k=1
a
(2)
k φ(1)(2 · −k) +

X3

k=1
b
(2)
k φ(2)(2 · −k),

meaning that their support is [0, 2]. Up to a scaling, these functions are uniquely

determined by imposing that they are orthogonal to P3(0, 2) and that ψ(1)( · − 1) is

even and ψ(2)( · − 1) is odd. The coefficients a
(i)
k , b

(i)
k (i ∈ {1, 2}) can be found in

Table 1.

We seek the third and fourth type of the form

ψ(3) :=
X3

k=−3
a
(3)
k φ(1)(2 · −k) +

X3

k=−3
b
(3)
k φ(2)(2 · −k),

ψ(4) :=
X3

k=−3
a
(4)
k φ(1)(2 · −k) +

X3

k=−3
b
(4)
k φ(2)(2 · −k),

meaning that their support is [−2, 2]. Up to a scaling, these functions are uniquely

determined by imposing that they are orthogonal to P3(−2, 0) × P3(0, 2), that ψ(3)

is even and ψ(4) is odd and, in order to create a more sparse mass matrix, that they

are orthogonal to ψ(1)( · − k) and ψ(2)( · − k) (k ∈ 2Z). The coefficients a
(i)
k , b

(i)
k

(i ∈ {3, 4}) can be found in Table 1.
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With

ψ
(i)
j+1,k :=

√
2j+1 ψ(i)(2j+1 · −k),

by construction, the collection

Ψj+1 :={ψ(i)
j+1,k : i ∈ {1, 2}, k ∈ {0, 2, . . . , 2j+1 − 2}} (13)

∪ {ψ(3)
j+1,k : k ∈ {2, 4, . . . , 2j+1 − 2}} ∪ {ψ(4)

j+1,k|I : k ∈ {0, 2, . . . , 2
j+1}}

is contained in Wj+1 = Vj+1 ∩ Ṽ
⊥L2(I)

j , where its cardinality, being 2j+2, is equal to

the dimension of this space, i.e., the collection spans Wj+1.

With ψ̄1 := ψ1, ψ̄2 := ψ2, ψ̄3 := ψ3|[0,2], ψ̄4 := ψ4|[0,2], ψ̄5 := ψ3( · − 2)|[0,2] and

ψ̄6 := ψ4(· − 2)|[0,2], a numerical calculation reveals that the “element mass matrix”

matrix

ˆ
〈ψ̄i, ψ̄j〉L2(0,2)

˜
1≤i,j≤6

=

266666664

2467613
3603600

400733
10810800 0 0 − 923411

3603600
137987

10810800
400733

10810800
7841

3603600 0 0 − 137987
10810800

20431
32432400

0 0 52
1575 0 0 0

0 0 0 704
10647 0 0

− 923411
3603600 −

137987
10810800 0 0 2467613

3603600 − 400733
10810800

137987
10810800

20431
32432400 0 0 − 400733

10810800
7841

3603600

377777775
is positive definite. As a consequence, for any J ⊂ 2Z, and any subset

Σ ⊂ {ψ(i)( · − k) : i ∈ {1, . . . , 4}, k ∈ 2Z}

of functions that do not identically vanish on G := ∪k∈J (k, k + 2), {σ|G : σ ∈ Σ}
is a L2(G)-Riesz basis of its span with a condition number that can be bounded on

an absolute multiple of the condition number of
ˆ
〈ψ̄i, ψ̄j〉L2(0,2)

˜
1≤i,j≤6

. This follows

from the observation that˙ X
σ∈Σ

cσσ,
X
τ∈Σ

cτ τ
¸
L2(G)

=
X
k∈J

˙ X
σ∈Σ

cσσ|(k,k+2),
X
τ∈Σ

cτ τ |(k,k+2)

¸
L2(k,k+2)

.

Since the same holds true for the dilated functions, we conclude that (13) defines a

uniform L2(I)-Riesz basis for Vj+1 ∩ Ṽ
⊥L2(I)

j .

6 Condition numbers

A result of Corollary 1 is that Φ0 ∪ ∪j∈NΨj , where Φ0 and Ψj are as in (12) and

(13), respectively, forms, when normalized in L2(I) or H1(I), a Riesz basis for L2(I)

and H1
0 (I), respectively. In particular, this shows that the condition numbers of the

mass matrix and the normalized stiffness matrix are bounded. In various estimates, the

values of these condition numbers play a role. Since it is not feasible to compute the

actual condition numbers of the infinite dimensional matrices, instead we computed

those of

~AJ :=

" R
I ψ̇µψ̇λ

‖ψ̇µ‖L2(I)‖ψ̇λ‖L2(I)

#
λ,µ∈∇,|λ|,|µ|≤J

and ~MJ :=

»Z
I
ψµψλ

–
λ,µ∈∇,|λ|,|µ|≤J

.

The condition numbers of these matrices, which are bounded uniformly in J , are shown

in Figure 2.

Also, we computed the condition number of the mass matrix of wavelets on one

level, i.e., the condition number of the matrix
ˆR

I ψµψλ
˜
λ,µ∈∇,|λ|=|µ|=J . Numerical

results show that the value of this condition number is bounded by 2.2 uniformly in J .



11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

10

20

30

40

50

60

J

κ( ~MJ )

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

J

κ( ~AJ )

Fig. 2 Condition number of the mass matrix ~MJ (left) and the stiffness matrix ~AJ (right).
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Fig. 3 {φ(1), φ(2), φ(3), φ(4)} from (14).

7 Proof of Theorem 2

In view of Remark 6, it suffices to construct uniform L2(I)-Riesz bases Φj and Φ̃j for

Vj from (6) and Ṽj from (7), respectively, such that 〈Φj , Φ̃j〉L2(I) is invertible, with an

inverse that is bounded uniformly in j.

With φ(1) and φ(2) from (11), and φ(3) := φ(1)( · − 1) and φ(4) := φ(2)( · − 1),

{φ(i)( · − k) : i ∈ {1, . . . , 4}, k ∈ 2Z} (14)

spans the space of C1 piecewise cubics with respect to the pieces [k, k+ 1] (k ∈ Z), see

Figure 3. With φ̃(i)(x) := (x− 1)i−1|[0,2], obviously

{φ̃(i)( · − k) : i ∈ {1, . . . , 4}, k ∈ 2Z} (15)

spans
Q
k∈2Z P3(k, k + 2), see Figure 4.

We apply a number of basis transformation at primal and dual side. First we

update φ(1), φ(2) with multiples of φ(3), φ(3)( · + 2), φ(4), φ(4)( · + 2), and φ̃(1), φ̃(2)

with multiples of φ̃(3) and φ̃(4) in such a way that the new φ(1), φ(2) are orthogonal

to φ̃(3)( · − k) and φ̃(4)( · − k) (k ∈ 2Z), and the new φ̃(1), φ̃(2) are orthogonal to φ(3)
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Fig. 4 {φ̃(1), φ̃(2), φ̃(3), φ̃(4)} from (15).
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1
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φ(1)

φ(2)

Fig. 5 New primal functions {φ(1), φ(2)}.

and φ(4). In particular, we redefine

"
φ(1)

φ(2)

#
:=

"
φ(1)

φ(2)

#
+

»
−2 −2 − 45

4
45
4

− 1
4

1
4

5
4

5
4

– 26664
φ(3)

φ(3)( · + 2)

φ(4)

φ(4)( · + 2)

37775 ,
"
φ̃(1)

φ̃(2)

#
:=

"
φ̃(1)

φ̃(2)

#
+

»
− 15

2 0

0 − 7
2

– "
φ̃(3)

φ̃(4)

#
.

To make two more inner products between local primal and dual functions zero,

next we redefine "
φ̃(1)

φ̃(2)

#
:=

»
− 1

4
15
16

− 1
4 −

15
16

– "
φ̃(1)

φ̃(2)

#
.

Furthermore, we multiply φ(1) with 2
3 and φ(2) with 48

7 . Finally, we redefine

"
φ̃(1)

φ̃(2)

#
:=

»
1 1

1 −1

– "
φ̃(1)

φ̃(2)( · + 2)

#
.

By the last transformation, as φ(1) (φ(2)) the function φ̃(1) (φ̃(2)) is even (odd).

The newly defined primal and dual scaling functions are illustrated in Figures 5

and 6, respectively. Note that our transformations did not change the spans of the

collections (14) and (15).
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-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0
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φ̃(1)
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Fig. 6 New dual functions {φ̃(1), φ̃(2)}.

A direct computation shows that

D
266666664

φ(1)

φ(2)

φ(1)( · − 2)

φ(2)( · − 2)

φ(3)

φ(4)

377777775
,

266666664

φ̃(1)

φ̃(2)

φ̃(1)( · − 2)

φ̃(2)( · − 2)

φ̃(3)

φ̃(4)

377777775
E
L2(0,2)

=

266666664

1
2

1
2 0 0 0 0

1
2

1
2

1
14 −

1
14 0 0

0 0 1
2 − 1

2 0 0

− 1
14 −

1
14 −

1
2

1
2 0 0

0 0 0 0 2
15 0

0 0 0 0 0 2
105

377777775
. (16)

With

φ
(i)
j,k :=

√
2j+1 φ(i)(2j+1 · −k), φ̃

(i)
j,k :=

√
2j+1 φ̃(i)(2j+1 · −k)

and

Φ
(1)
j := {φ(1)

j,k : k ∈ {2, . . . , 2j+1 − 2}} ∪ {φ(2)
j,k |I : k ∈ {0, 2, . . . , 2

j+1}},

Φ
(2)
j := {φ(i)

j,k : i ∈ {3, 4}, k ∈ {0, 2, . . . , 2j+1 − 2}},

Φ̃
(1)
j := {φ̃(1)

j,k : k ∈ {2, . . . , 2j+1 − 2}} ∪ {φ̃(2)
j,k |I : k ∈ {0, 2, . . . , 2

j+1}},

Φ̃
(2)
j := {φ̃(i)

j,k : i ∈ {3, 4}, k ∈ {0, 2, . . . , 2j+1 − 2}},

the collections Φj := Φ
(1)
j ∪ Φ(2)

j and Φ̃j := Φ̃
(1)
j ∪ Φ̃(2)

j are uniform L2(I)-Riesz bases

for Vj and Ṽj , respectively. Indeed, one verifies that spanΦj ⊂ Vj , span Φ̃j ⊂ Ṽj and

that #Φj = dimVj = 2j+1 = dim Ṽj = #Φ̃j . From the local supports and the proper

normalization of the basis functions, one also easily verifies that for any coefficient

vector cj of the appropriate size, ‖c>j Φj‖L2(I) . ‖cj‖`2 and ‖c>j Φ̃j‖L2(I) . ‖cj‖`2 .
Instead of a direct verification that also ‖c>j Φj‖L2(I) & ‖cj‖`2 and ‖c>j Φ̃j‖L2(I) &

‖cj‖`2 are valid, i.e., that Φj and Φ̃j are uniform L2(I)-Riesz bases for their spans,

it suffices to verify that 〈Φj , Φ̃j〉L2(I) is invertible, with an inverse that is bounded

uniformly in j, which we will do below. Indeed, from this property and ‖c>j Φj‖L2(I) .
‖cj‖`2 , we obtain

‖c̃j‖`2 . ‖〈Φj , Φ̃j〉L2(I)c̃j‖`2 = sup
cj 6=0

|〈cj , 〈Φj , Φ̃j〉L2(I)c̃j〉`2 |
‖cj‖`2

= sup
cj 6=0

|〈c>j Φj , c̃
>
j Φ̃j〉L2(I)|

‖cj‖`2
. ‖c̃>j Φ̃j‖L2(I) sup

cj 6=0

‖c>j Φj‖L2(I)

‖cj‖`2
. ‖c̃>j Φ̃j‖L2(I),
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Fig. 7 The assembling of 〈Φ(1)

j , Φ̃
(1)
j 〉L2(I) from the 4 × 4 left upper block from (11).

and similarly, using ‖c̃>j Φ̃j‖L2(I) . ‖c̃j‖`2 , that ‖cj‖`2 . ‖c>j Φj‖L2(I).

For i 6= ı′, 〈Φ(i)
j , Φ̃

(ı′)
j 〉L2(I) = 0, and 〈Φ(2)

j , Φ̃
(2)
j 〉L2(I) is a diagonal matrix that is

uniformly spectrally equivalent to the identity matrix. The matrix 〈Φ(1)
j , Φ̃

(1)
j 〉L2(I) is

assembled from the 4 × 4 left upper block from (16) as indicated in Figure 7, where

in the overlays the matrices should be added. The striking out of the first and the

one but last rows and columns corresponds to the fact that for k ∈ {0, 2j+2}, φ(1)
j,k

and φ̃
(1)
j,k are not in Φj and Φ̃j , respectively. By multiplying the first and last rows

and columns of 〈Φ(1)
j , Φ̃

(1)
j 〉L2(I) with

√
2, a matrix of the form I − Bj is obtained,

where ‖Bj‖ ≤
p
‖Bj‖1‖Bj‖∞ ≤ ρ for some ρ < 1 independent of j. Such a matrix

is invertible, with a uniformly bounded inverse, with which the proof of Theorem 2 is

completed.

References

1. Bungartz, H., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
2. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam (2003)
3. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equa-

tions – Convergence rates. Math. Comp 70, 27–75 (2001)
4. Dahlke, S., Weinreich, I.: Wavelet-Galerkin methods: an adapted biorthogonal wavelet

basis. Constr. Approx. 9(2-3), 237–262 (1993)
5. Dahmen, W.: Stability of multiscale transformations. J. Fourier Anal. Appl. 4, 341–362

(1996)
6. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6,

55–228 (1997)
7. Dahmen, W., Stevenson, R.: Element-by-element construction of wavelets satisfying sta-

bility and moment conditions. SIAM J. Numer. Anal. 37(1), 319–352 (1999)
8. Dauge, M., Stevenson, R.: Sparse tensor product wavelet approximation of singular func-

tions. Tech. rep. (2009). Submitted
9. Dijkema, T., Schwab, C., Stevenson, R.: An adaptive wavelet method for solving high-

dimensional elliptic PDEs. Constr. Approx. 30(3), 423–455 (2009)
10. Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method without

coarsening of the iterands. Math. Comp. 76, 615–629 (2007)
11. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications.

Vol. I. Springer-Verlag, New York (1972). Translated from the French by P. Kenneth, Die
Grundlehren der mathematischen Wissenschaften, Band 181


