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Abstract. We analyse the local stability of the high-temperature fixed point
of the loopy belief propagation (LBP) algorithm and how this relates to the
properties of the Bethe free energy which LBP tries to minimize. We focus on
the case of binary networks with pairwise interactions. In particular, we state
sufficient conditions for convergence of LBP to a unique fixed point and show that
these are sharp for purely ferromagnetic interactions. In contrast, in the purely
antiferromagnetic case, the undamped parallel LBP algorithm is suboptimal in
the sense that the stability of the fixed point breaks down much earlier than
for damped or sequential LBP; we observe that the onset of instability for the
latter algorithms is related to the properties of the Bethe free energy. For spin-
glass interactions, damping LBP only helps slightly. We estimate analytically the
temperature at which the high-temperature LBP fixed point becomes unstable
for random graphs with arbitrary degree distributions and random interactions.
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1. Introduction

Techniques that were originally developed in the statistical physics of lattice models are
nowadays increasingly often and successfully applied in diverse application areas such as
information theory, coding theory, combinatorial optimization and machine learning. A
prominent example is the Bethe–Peierls approximation [1, 2], an extension of the ordinary
mean field method that takes into account correlations between nearest neighbour sites. A
more general and powerful approximation scheme, which is also currently being used as a
general inference tool in applications in the aforementioned areas, is the cluster variation
method (CVM) [3, 4], also called Kikuchi approximation. The CVM treats arbitrarily
large clusters of sites exactly; the Bethe approximation can be seen as the simplest non-
trivial case (the pair approximation) of the cluster variation method.
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The problems arising in the aforementioned application domains can often be
reformulated as inference problems on graphical models, i.e. as the calculation of marginal
probabilities of some probability distribution. Typically, this probability distribution is
proportional to a product of many factors, each factor depending on only a few variables;
this structure can be expressed in terms of a graph, hence the name graphical model.
An illustrative example can be found in image restoration [5], where the 2D classical
Ising model can be used to model features of monochromatic images. The pixels in the
image correspond to the Ising spins, the local external fields correspond to observed,
noisy pixels and the probability distribution over different images corresponds to the
equilibrium Boltzmann distribution of the Ising model. The underlying graph is in this
example the 2D rectangular lattice, and the interactions between the nearest neighbours
correspond to factors in the probability distribution. By taking the interactions to be of
the ferromagnetic type, one can obtain a smoothing filter.

In statistical physics, one is predominantly interested in the thermodynamic limit
of infinitely large systems and, furthermore, in the case of disordered systems, one
usually averages over a whole ensemble of such systems. In contrast, in the applications
in computer science the primary interest lies in the properties of individual, finite
systems—in the example above, one would be interested in individual images. Given
the probability distribution, the task is then to calculate marginal probabilities, which
in principle amounts to performing a summation or integral. Unfortunately, the required
computational time is generally exponential in the number of variables, and the calculation
quickly becomes infeasible for real-world applications.

Therefore, one is often forced to use approximative methods, such as Monte Carlo
methods or ‘deterministic approximations’. A prominent example of the latter category
is the successful belief propagation algorithm [6], which was originally developed as a fast
algorithm to calculate probabilities on graphical models without loops (i.e. on trees), for
which the results are exact. The same algorithm can also be applied on graphs containing
loops, in which case the results are approximative, and it is then often called loopy belief
propagation (LBP) to emphasize the fact that the graph may contain loops. The results
can be surprisingly good, even for small graphs with many short loops, e.g. in the case of
decoding error-correcting codes [7, 8]. An important discovery was that the LBP algorithm
in fact tries to minimize the Bethe free energy (more precisely, fixed points of the LBP
algorithm correspond to stationary points of the Bethe free energy) [9]. This discovery
has led to renewed interest in the Bethe approximation and related methods and to
cross-fertilization between disciplines, a rather spectacular example of which is the survey
propagation (SP) algorithm, which is now the state of the art solution method for some
difficult combinatorial optimization problems [10]. Other examples are the generalizations
of LBP obtained by replacing the Bethe free energy by the more complicated Kikuchi free
energy, which has resulted in algorithms that are much faster than the NIM algorithm
developed originally by Kikuchi [4].

This paper is organized as follows. We start in section 2 with a brief review of
the Bethe approximation and the loopy belief propagation algorithm, trying to combine
the two different points of view, namely the statistical physicist’s perspective and the
one found in machine learning and computer science. A notorious problem plaguing
applications of LBP is the fact that it does not always converge to a fixed point. With
the aim of better understanding these convergence issues, in section 3 we discuss the local
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stability of LBP fixed points, state ‘global’ conditions for convergence towards a unique
fixed point and discuss the stability of the high-temperature Bethe free energy minimum.
In section 4, we qualitatively discuss how these properties are related and connect them
with phase transitions in the thermodynamic limit. In section 5, we quantify the results of
the previous section by estimating the phase transition temperatures for random graphs
with random interactions.

This paper is written primarily for statistical physicists, but we tried to make it also
understandable for readers with a background in computer science, which may explain
some seemingly redundant remarks.

2. The Bethe approximation and the LBP algorithm

2.1. The graphical model

Let G = (V, B) be an undirected labelled graph without self-connections, defined by a set
of vertices V = {1, . . . , N} and a set of edges B ⊆ {(i, j) | 1 ≤ i < j ≤ N}. The adjacency
matrix M corresponding to G is defined as follows: Mij = 1 if (ij) ∈ B or (ji) ∈ B and 0
otherwise. Denote by Ni the set of neighbours of vertex i, and the degree (connectivity)
of vertex i by di := |Ni| =

∑
j∈V Mij .

With each vertex i ∈ V we associate a random variable si (called a ‘spin’), taking
values in {−1, +1}. We put weights Jij on the edges (ij): let J be a symmetric N × N
matrix that is compatible with the adjacency matrix M , i.e. Jij = 0 if Mij = 0. Let
θ ∈ RN be local ‘fields’ (local ‘evidence’) acting on the vertices. We will study the
Boltzmann distribution corresponding to the Hamiltonian

H = −
∑

(i,j)∈B

Jijsisj −
∑

i

θisi = −1
2

∑

i,j

JijMijsisj −
∑

i

θisi, (1)

i.e. the probability of the configuration s = (s1, . . . , sN) ∈ {−1, +1}N is given by

P (s) =
1

Z
exp

(

β
∑

(i,j)∈B

Jijsisj + β
∑

i

θisi

)

(2)

with β > 0 the inverse temperature and Z a normalization constant. The problem that
we would like to solve is calculating the first and second moments 〈si〉 and 〈sisj〉 under
this distribution. In general, this is an NP-complete problem, so in practice we often have
to settle for approximations of these quantities.

The general model class that we have described above has been the subject of
numerous investigations in statistical physics. There one often takes a lattice as the
underlying graph G, or studies an ensemble of random graphs (including the fully
connected SK model as a limiting case). The weights Jij and the local fields θi are often
taken to be iid according to some probability distribution (a special case is where this
probability distribution is a delta function—this corresponds to uniform, deterministic
interactions). In these cases one can take the thermodynamic limit N → ∞, which is
the subject of investigation of the major part of statistical physics studies (except for
the studies of ‘finite size effects’). Depending on these weight distributions and on the
graph structure, macroscopic order parameters can be identified that distinguish between
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different phases, e.g. the ferromagnetic phase for large positive weights or a spin-glass
phase for weights that are distributed around zero.

The probability distribution (2) is a special case of the class of probability
distributions over N discrete random variables {Xi}N

i=1, with Xi taking values in some
finite set Xi, that factorize as a product of factors ψ (often called ‘potentials’ in computer
science literature—not to be confused with the potentials in statistical physics, which are
essentially the logarithms of the factors) in the following way:

P (X = x) =
1

Z

∏

(ij)∈B

ψij(xi, xj)
∏

i∈V

ψi(xi) (3)

with Z the normalization constant. These probability distributions are known in machine
learning as undirected graphical models (in this case consisting of N nodes with pairwise
potentials) or as Markov random fields. In fact, it is easy to see that (2) is equivalent to (3)
when all variables are binary (and the factors are positive); in this case, equation (2) can
obviously be written in the form of (3), but the converse also holds. Applications include
decoding of error-correcting codes [7], artificial vision [11] and medical diagnosis [12]. In
contrast with the case of statistical physics studies, the number of variables is usually
finite and one is interested in a single instance instead of the properties of an ensemble of
instances.

In the following three subsections, we describe the LBP algorithm and the Bethe
approximation for the graphical model (3), and what is known about the relation between
the two.

2.2. Bethe approximation

The calculation of properties such as marginals P (si) of the probability distribution (2) is
an NP-complete problem. Only in cases with much symmetry (e.g. when all weights Jij are
equal and the field is uniform, i.e. θi = θ, and the graph has a high permutation symmetry,
e.g. translation symmetry in the case of a 2D rectangular lattice), or if N is small, or if
the graph contains no cycles, it is possible to calculate marginals exactly. In other cases,
one has to use approximate methods, such as Monte Carlo methods or ‘deterministic’
approximation methods, the simplest of which is the well-known mean field method. An
extension of the mean field method that treats pairs of neighbouring spins exactly is the
Bethe approximation, also known as the Bethe–Peierls approximation [1, 2].

The Bethe approximation consists of minimizing the Bethe free energy, which for the
factorizing probability distribution (3) is defined as the following functional [9]:

FBethe({bi, bij})

=
∑

(ij)∈B

∑

xi,xj

bij(xi, xj) log
bij(xi, xj)

ψij(xi, xj)ψi(xi)ψj(xj)

−
∑

i

(di − 1)
∑

xi

bi(xi) log
bi(xi)

ψi(xi)
. (4)

Its arguments, called beliefs, are single-node marginals bi(xi) and pairwise marginals
bij(xi, xj). The Bethe approximation is obtained by minimizing the Bethe free energy
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with respect to the beliefs under the following normalization and consistency constraints:
∑

xi

bi(xi) = 1 for all i ∈ V, (5)

∑

xi

bij(xi, xj) = bj(xj) for all (ij) ∈ B. (6)

The values of these variables at the minimum of FBethe are then taken as approximations
for the marginal distributions P (xi) and P (xi, xj). The beliefs are the exact marginals
when the underlying graph G contains no cycles [13]. The rationale for minimizing the
Bethe free energy is that the Bethe free energy is an approximate Gibbs free energy
with an exact energy term, but in which the entropy term is approximated by only
the single-node and pairwise entropies. Minimizing the exact Gibbs free energy would
recover the exact marginal distributions P (xi) and P (xi, xj), but is infeasible; minimizing
its approximation, the Bethe free energy, gives approximations bi and bij to the exact
marginal distributions [14].

2.3. LBP algorithm

A popular and efficient algorithm for obtaining the Bethe approximation is loopy belief
propagation (LBP), also known under the names sum-product algorithm [15] and simply
belief propagation [6]. The adjective ‘loopy’ is used to emphasize the fact that the graph
may contain cycles, i.e. that the beliefs are only approximations of the exact marginals.

The LBP algorithm consists of the iterative updating of a set of messages {µij : (ij) ∈
B ∨ (ji) ∈ B}. The new message µnew

ij that vertex i sends to its neighbour j is given in

terms of all incoming messages by the following update rule [9]1:

µnew
ij (xj) ∝

∑

xi

ψij(xi, xj)ψi(xi)
∏

k∈Ni\j

µki(xi), (7)

where one usually normalizes messages such that
∑

xj
µnew

ij (xj) = 1. The update schedule

can be chosen to be parallel (‘flooding schedule’), sequential (‘serial schedule’) or random;
the update schedule influences convergence properties.

When the messages µij have converged to some fixed point µ∞
ij , the approximate

marginal distributions (beliefs) {bi}i∈V and {bij}(ij)∈B are calculated from

bi(xi) ∝ ψi(xi)
∏

k∈Ni

µ∞
ki(xi), (8)

bij(xi, xj) ∝ ψij(xi, xj)ψi(xi)ψj(xj)




∏

k∈Ni\j

µ∞
ki (xi)








∏

k∈Nj\i

µ∞
kj(xj)



 . (9)

Note that these beliefs satisfy the normalization and consistency constraints (5) and (6).
Unfortunately, LBP does not always converge. It can get trapped in limit cycles, or

it can wander around chaotically, depending on the problem instance. This non-robust
behaviour hampers application of LBP as a ‘black box’ inference algorithm. Furthermore,
there is some empirical evidence that if LBP does not converge, the quality of the Bethe

1 Here and in the following, if X is a set, we write X \ i as shorthand notation for X \ {i}.
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approximation (which can also be obtained by using double-loop algorithms [16] that are
guaranteed to converge, but are slower than LBP) is low. The analysis that we will perform
in subsequent sections should be seen as first steps in obtaining a better understanding of
these issues.

2.4. The connection between LBP and the Bethe approximation

Using Lagrange multipliers, one can prove [9] that the beliefs b(µ∞) corresponding to a
LBP fixed point µ∞ are a stationary point of the Bethe free energy under the constraints
(5) and (6). Conversely, a set of messages µ for which the corresponding beliefs b(µ) are
a stationary point of the constrained Bethe free energy are a fixed point of LBP. In other
words: stationary points of the Bethe free energy correspond one-to-one to fixed points
of LBP.

It takes considerably more effort to prove that (locally) stable LBP fixed points
are (local) minima of the constrained Bethe free energy [17]. The converse does not
necessarily hold (as was already observed by Heskes [17]), i.e. a minimum of the Bethe
free energy need not be a stable fixed point of LBP. In that case, LBP cannot be used to
obtain the Bethe approximation. We will see examples of this in section 4.

3. Stability analysis for binary variables

From now on, we consider the special case (2) for which all variables are binary. In this
section, we derive conditions for the local stability of fixed points of parallel LBP, in the
undamped and damped cases. We state sufficient conditions for the uniqueness of the
fixed point and ‘global’ convergence properties of parallel, undamped LBP. Finally, we
discuss the properties of Bethe energy minima for binary variables. In section 4 we will
study the relations between those properties. We will start with reformulating LBP for
the case of binary variables.

3.1. LBP for binary variables

In the case of binary variables, we can parametrize each message µij by a single real
number. A canonical choice is to transform to the variables νij defined by

νij := tanh−1(µij(sj = 1) − µij(sj = −1)). (10)

The LBP update equations (7) can be written in terms of these new messages as

tanh(νnew
ij ) = tanh(βJij) tanh(βhi\j), (11)

where we defined the ‘cavity field’ hi\j by

βhi\j := βθi +
∑

k∈Ni\j

νki. (12)

Our usage of the term ‘cavity field’ corresponds to that in [18] and is motivated by the
fact that hi\j is the effective field that acts on spin i in the absence of spin j (under the
assumption that the spins k ∈ Ni are independent in the absence of spin j).
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The single-node beliefs bi(si) can be parametrized by their means (‘magnetizations’)

mi := 〈si〉bi
=

∑

si

sibi(si), (13)

and the pairwise beliefs bij(si, sj) can be parametrized by mi, mj and the second-order
moment (‘correlation’)

χij := 〈sisj〉bij
=

∑

si,sj

sisjbij(si, sj). (14)

The beliefs (8) and (9) at a fixed point ν∞ can then simply be written as

mi = tanh(βh∞
i\j + ν∞

ji ), (15)

χij = tanh
(
βJij + tanh−1 ( tanh(βh∞

i\j) tanh(βh∞
j\i))

)
. (16)

3.2. Local stability of undamped, parallel LBP fixed points

For the parallel update scheme, we can consider the update mapping F : ν 
→ νnew written
out in components in (11). Its derivative (‘Jacobian’) is given by

F ′(ν) =
∂νnew

ij

∂νkl
=

1 − tanh2(βhi\j)

1 − tanh2(βJij) tanh2(βhi\j)
tanh(βJij) 1Ni\j(k) δi,l (17)

where 1 is the indicator function (i.e. 1X(x) = 1 if x ∈ X and 0 otherwise) and δ the
Kronecker delta function.

Let ν be a fixed point of parallel LBP. We call ν locally stable if, starting close enough
to the fixed point, LBP will converge to it. A fixed point ν is locally stable if all eigenvalues
of the Jacobian F ′(ν) lie inside the unit circle in the complex plane [19]:

ν is locally stable ⇐⇒ σ(F ′(ν)) ⊆ {λ ∈ C : |λ| < 1}, (18)

where σ(F ′) denotes the spectrum (set of eigenvalues) of the matrix F ′. If at least one
eigenvalue lies outside the unit circle, the fixed point is unstable.

3.3. Local stability conditions for damped, parallel LBP

The LBP equations can in certain cases lead to oscillatory behaviour, which may be
remedied by damping the update equations. This can be done by replacing the update
map F : ν 
→ ν by the convex combination Fε := (1− ε)F + εI of F and the identity I, for
damping strength 0 ≤ ε < 1. Fixed points of F are also fixed points of Fε and vice versa.
The spectrum of the local stability matrix of the damped LBP update mapping becomes

σ(F ′
ε(ν)) = (1 − ε)σ(F ′(ν)) + ε.

In words, all eigenvalues of the local stability matrix without damping are simply
interpolated with the value 1 for damped LBP. It follows that the condition for (local)
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stability of a fixed point ν under arbitrarily large damping is given by

ν is stable under Fε for some damping ε ⇐⇒ σ(F ′(ν)) ⊆ {λ ∈ C : Reλ < 1}, (19)

i.e. all eigenvalues of F ′(ν) should have real part smaller than 1.
Note that conditions (18) and (19) do not depend on the chosen parametrization of

the messages. In other words, the local stability of the LBP fixed points does not depend
on whether one uses µij messages or νij messages, or some other parametrization, i.e. the
choice made in (10) has no influence on the results, but it does simplify the calculations.

3.4. Uniqueness of LBP fixed points and convergence

The foregoing conditions are local and by themselves are not strong enough for drawing
conclusions about global behaviour, i.e. whether or not LBP will converge for any initial
set of messages.

In [20] we have derived sufficient conditions for the uniqueness of the LBP fixed point
and convergence of undamped, parallel LBP to the unique fixed point, irrespective of the
initial messages. For the binary case, our result can be stated as follows2:

Theorem 1. If the spectral radius3 of the square matrix

Bij,kl := tanh(β |Jij |)δi,l1Ni\j(k) (20)

is strictly smaller than 1, undamped parallel LBP converges to a unique fixed point,
irrespective of the initial messages.

Proof. See [20]. 
�
Note that the matrix B, and hence the sufficient condition, depends neither on the

fields θi, nor on the sign of the weights Jij.
These conditions are sufficient, but by no means necessary, as we will see in the next

section. However, for ferromagnetic interactions without local fields, they are sharp, as
we will prove later on. First we discuss some properties of the Bethe free energy that we
will need in section 4.

3.5. Properties of the Bethe free energy for binary variables

For the case of binary variables, the Bethe free energy (4) can be parametrized in terms
of the means mi = 〈si〉bi

and correlations χij = 〈sisj〉bij
; it becomes

FBe(m, χ) := −β
∑

(ij)∈B

Jijχij − β
∑

i

θimi +
N∑

i=1

(1 − di)
∑

si=±1

η

(
1 + misi

2

)

+
∑

(ij)∈B

∑

si,sj=±1

η

(
1 + misi + mjsj + sisjχij

4

)

(21)

2 An equivalent result but formulated in terms of an algorithm was derived independently in [21].
3 The spectral radius ρ(B) of a matrix B is defined as ρ(B) := sup |σ(B)|, i.e. it is the largest absolute value of
the eigenvalues of B.
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where η(x) := x log x. The normalization and consistency constraints (5) and (6) are
satisfied automatically; however, now we need to enforce positivity constraints

−1 ≤ mi ≤ 1

−1 ≤ χij ≤ 1

1 + miσ + mjσ
′ + χijσσ′ ≥ 0 for all σ, σ′ = ±1

which guarantee that the beliefs {bi}i∈V and {bij}(ij)∈B are positive. The stationary points
of the Bethe free energy (21) are the points where the derivative of (21) vanishes; this
yields the following equations:

0 =
∂FBe

∂mi
= −βθi + (1 − di) tanh−1 mi

+
∑

j∈Ni

1

4
log

(1 + mi + mj + χij)(1 + mi − mj − χij)

(1 − mi + mj − χij)(1 − mi − mj + χij)
. (22)

0 =
∂FBe

∂χij
= −βJij + 1

4
log

(1 + mi + mj + χij)(1 − mi − mj + χij)

(1 + mi − mj − χij)(1 − mi + mj − χij)
. (23)

The last equation has a unique solution χij as a function of mi and mj [22].
From now on we consider the special case of vanishing local fields (i.e. θi = 0) in the

interest of simplicity. Note that in this case, the LBP update equations (11) have a trivial
fixed point, namely νij = 0. The corresponding beliefs have mi = 0 and χij = tanh(βJij),
as follows directly from (15) and (16); of course, this also follows from (22) and (23). We
call this fixed point the paramagnetic fixed point (or the high-temperature fixed point to
emphasize that it exists for high enough temperature, i.e. for β small enough).

Whether the paramagnetic stationary point of the Bethe free energy is indeed a
minimum depends on whether the Hessian of FBe is positive definite. The Hessian at the
paramagnetic stationary point is given by

∂2FBe

∂mj∂mi
= δij

(

1 +
∑

k∈Ni

χ2
ik

1 − χ2
ik

)

+ Mij
−χij

1 − χ2
ij

=: Uij ,

∂2FBe

∂mk∂χij
= 0,

∂2FBe

∂χkl∂χij

= δ(ij),(kl)
1

1 − χ2
ij

.

(24)

The Hessian is of block-diagonal form; the χ-block is always positive definite, and hence
the Hessian is positive definite if and only if the m-block (Uij) is positive definite. This
depends on the weights Jij and on the graph structure; for β small enough (i.e. high
temperature), this is indeed the case. A consequence of the positive definiteness of the
Hessian of the Bethe free energy is that the approximate covariance matrix, given by U−1,
is also positive definite.

4. Phase transitions

In this section we discuss various phase transitions that may occur, depending on the
distribution of the weights Jij . We take the local fields θi to be zero. Our usage of
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the term ‘phase transition’ is somewhat inaccurate, since we actually mean the finite-N
manifestations of the phase transition in the Bethe approximation and in the dynamical
behaviour of the LBP algorithm, instead of the common usage of the word, which refers to
the N → ∞ behaviour of the exact probability distribution. We conjecture that, at least
for the ferromagnetic and spin-glass phase transitions, these different notions coincide in
the N → ∞ limit.

4.1. Ferromagnetic interactions

Consider the case of purely ferromagnetic interactions, by which we mean that all
interactions Jij are positive. In that case, the local LBP stability matrix F ′(0) at the
trivial fixed point, given by

F ′(0) = tanh(βJij)1Ni\j(k)δi,l, (25)

is equal to the matrix B in theorem 1. For high temperature (i.e. small β), the
paramagnetic fixed point is locally stable, as is evident from (25). Theorem 1 guarantees
that this is the only LBP fixed point and that parallel undamped LBP will converge
to it. When we gradually lower the temperature (i.e. increase β), at a sudden point
the paramagnetic LBP fixed point generally becomes unstable. This seems to hold for all
graphs that have more than one cycle. By a generalization of Perron’s theorem (theorem 3
in the appendix), the eigenvalue of the matrix F ′(0) (which has positive entries) with the
largest absolute value is actually positive. This property of the spectrum can be clearly
seen in figure 1(I(a)), where most eigenvalues are distributed in a roughly circular form,
except for one outlier on the positive real axis. Thus the onset of instability of the
paramagnetic LBP fixed point coincides with this outlier crossing the complex unit circle;
the paramagnetic fixed point bifurcates and two new stable fixed points arise, describing
the two ferromagnetic states. Since B = F ′(0), we conclude that the sufficient condition
in theorem 1 for convergence to a unique fixed point is sharp in this case.

At high temperature, the corresponding stationary point of the Bethe free energy is a
minimum. However, as illustrated in figure 1(II(a)), at a certain critical temperature the
Hessian is no longer positive definite. In the appendix, we prove the following theorem:

Theorem 2. For Jij ≥ 0 and θi = 0, the critical temperature at which the paramagnetic
Bethe free energy minimum disappears is equal to the critical temperature at which the
paramagnetic LBP fixed point becomes unstable.

Proof. See appendix. 
�
Beyond the transition temperature, LBP converges to either of the two new fixed

points describing the two ferromagnetic phases. As can be seen in figure 1(III(a)), the
number of LBP iterations needed for convergence has a peak precisely at the critical
temperature; far from the phase transition, LBP converges rapidly to a stable fixed point.

4.2. Antiferromagnetic interactions

For purely antiferromagnetic interactions, i.e. all Jij < 0, the situation is different. Again,
for high temperature, the paramagnetic fixed point is the unique fixed point, is locally
stable and has the complete message space as an attractor. Since the local stability matrix
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Figure 1. From top to bottom: (I) spectrum of the local LBP stability matrix
F ′ at the trivial fixed point ν = 0, for β = 1; (II) minimal eigenvalue of
Uij = ∂2FBe/∂mi∂mj at the paramagnetic solution, as a function of inverse
temperature β; (III) number of undamped, parallel LBP iterations needed for
convergence as a function of inverse temperature β (the dotted line in the
antiferromagnetic case shows the number of iterations for a sequential update
scheme). From left to right: (a) ferromagnetic interactions J = M ; (b)
antiferromagnetic interactions J = −M ; (c) spin-glass interactions J = ±M
with equal probability for positive or negative interaction. The underlying graph
G is a random graph with Poissonian degree distribution, N = 50 and average
degree d = 4; the local fields are zero.

F ′(0) is exactly the same as in the ferromagnetic case, except for the minus sign (as can
be seen in figure 1(I(b))), the local stability of the trivial fixed point is invariant under
a sign change J 
→ −J . Hence the paramagnetic fixed point becomes locally unstable
for undamped LBP exactly at the same temperature as in the ferromagnetic case, for
fixed weight strengths |Jij|. However, the spectral radius of F ′(0) is now determined by
a negative eigenvalue. Hence in this case damping helps to some extent. Empirically, we
find that also changing the update scheme from parallel to sequential helps, as illustrated
by the dotted line in figure 1(III(b)). Note that the temperature where sequential LBP
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stops converging roughly coincides with the minimum of the smallest eigenvalue of U
(compare figures 1(II(b)) and 1(III(b))). This observation seems to be generic, i.e. not just
a coincidence for the particular instance in figure 1. We have no theoretical explanation
for this at the moment, but it might be possible to get such an explanation by relating U
with F ′(0), using a technique similar to the one applied in the proof of theorem 2 given
in the appendix.

4.3. Spin-glass interactions

Now consider spin-glass interactions, i.e. all Jij are distributed around 0 such that
〈Jij〉 ≈ 0. This case is illustrated in figure 1(c). Here the eigenvalues of the local stability
matrix are distributed in a roughly circular form, without an outlier with a large absolute
value. Note the surprising similarity between the spectra in the different cases; we have
no explanation for this similarity, nor for the roughly circular form of the distribution of
the majority of the eigenvalues.

Although the paramagnetic Bethe free energy minimum generally does not disappear
when lowering the temperature, LBP does not converge any longer once the trivial fixed
point becomes unstable, despite the possible existence of other, stable, fixed points.
Neither damping nor changing the update scheme seems to help in this case. Empirically
we find that the temperature at which the trivial LBP fixed point becomes locally unstable
roughly coincides with the temperature at which the lowest eigenvalue of U attains its
minimal value [23]. Again, we have no theoretical explanation for this observation.

5. Estimates of the phase transition temperatures

In this section we estimate the critical temperatures corresponding to the onset of
instability of the LBP paramagnetic fixed point (which we discussed qualitatively in
the previous section) for a random graph with random interactions. The method is
closely related to the cavity method at the replica-symmetric level (see e.g. [24, 18, 25]).
A similar analysis of the stability of the LBP paramagnetic fixed point has been done
by Kabashima [26]; however, the results reported in that work are limited to the case of
infinite connectivity (i.e. the limit N → ∞, d → ∞). In this case, the results turn out to be
identical to the condition of replica symmetry breaking derived by Almeida and Thouless
(the ‘AT line’) [27]. The analysis we present below essentially extends the analysis of [26]
to the larger class of arbitrary degree distribution random graphs, which includes Erdős–
Rényi graphs (with Poissonian degree distribution, as well as fixed degree random graphs)
and power-law graphs (which have power-law degree distributions), amongst others.

5.1. Random graphs with arbitrary degree distributions

We consider arbitrary degree distribution random graphs [28]. This class of random graphs
has a prescribed expected degree distribution P (d); apart from that they are completely
random. Given an expected degree distribution P (d) and the number of nodes N , a
particular sample of the corresponding ensemble of random graphs can be constructed
as follows: for each node i, independently draw an expected degree δi from the degree
distribution P (d); then, for each pair of nodes (i, j), independently connect them with
probability δiδj/

∑
i δi; the expected degree of node i is then indeed 〈di〉 = δi. We define

the average degree 〈d〉 :=
∑

d P (d)d and the second moment 〈d2〉 :=
∑

d P (d)d2.
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We consider the case of vanishing local fields (i.e. θi = 0) and draw the weights Jij

independently from some probability distribution P (J). We also assume that the weights
are independent of the graph structure.

5.2. Estimating the PA–FE transition temperature

Assume P (d) to be given and N to be large. Assume that x is an eigenvector with
eigenvalue 1 of A := F ′(0), the Jacobian of the parallel LBP update at the paramagnetic
fixed point ν = 0. Using (17),

xij =
∑

kl

Aij,klxkl = tanh(βJij)
∑

k∈Ni\j

xki. (26)

Consider an arbitrary spin i; conditional on the degree di of that spin, we can calculate
the expected value of xij as follows:

E (xij | di) = E



tanh(βJij)
∑

k∈Ni\j

xki

∣
∣
∣
∣
∣
∣
di



 (27a)

= E (tanh(βJij)) E




∑

k∈Ni\j

xki

∣
∣
∣
∣
∣
∣
di



 (27b)

= 〈tanh βJ〉 (di − 1)
∑

dk

P (dk | di, k ∈ Ni)E (xki | di, dk) (27c)

≈ 〈tanh βJ〉 (di − 1)
∑

dk

P (dk | di, k ∈ Ni)E (xki | di) (27d)

using, subsequently: (a) equation (26); (b) the independence of the weights from the graph
structure; (c) conditioning on the degree dk of spin k and the equivalence of the various
k ∈ Ni \ j; and, finally, (d) neglecting the correlation between xki and dk, given di. We
have no formal argument for the validity of this approximation, but the result accurately
describes the outcomes of numerical experiments.

For arbitrary degree distribution random graphs, the probability of dk given the degree
di and the fact that k is a neighbour of i is given by (see [28])

P (dk | di, k ∈ Ni) =
dkP (dk)

〈d〉 .

Hence we obtain the relation

E (xij | di) = 〈tanh βJ〉 (di − 1)
∑

dk

dkP (dk)

〈d〉 E (xki | dk) . (28)

A self-consistent non-trivial solution of these equations is E (xij | di) ∝ (di − 1), provided
that

1 = 〈tanh βJ〉
(
〈d2〉
〈d〉 − 1

)

, (29)
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Figure 2. Onset of instability of the paramagnetic LBP fixed point, for random
graphs with N = 50 and a Poissonian degree distribution with d = 10. The
weights Jij are independently drawn from a Gaussian distribution with mean
J0 and variance J2. The solid thick lines show the expected value for the
(anti)ferromagnetic transitions (29) and (30), the dashed thick line for the spin-
glass transition (31). The dots show for individual instances at which temperature
the paramagnetic fixed point becomes unstable, for undamped LBP (left) and
for damped LBP (right). The lines in the right graph (the damped case) are for
reference only; they should not be interpreted as theoretical predictions, except
for the ferromagnetic transition (the solid line on the right-hand side).

which gives us the critical temperature at which the paramagnetic–ferromagnetic phase
transition occurs, or in other words, where the paramagnetic LBP fixed point undergoes a
pitchfork bifurcation. This result is identical to the one obtained by the replica method in
the replica-symmetric setting [29] and to the one found by applying the cavity method [25],
as expected. Figure 2 illustrates the estimate; note that the accuracy is quite high already
for low N (N = 50 in this case), and for higher N it becomes even better.

Extending the analysis to the case of non-vanishing local fields does not appear
to be straightforward, since in that case the value of the fixed point ν is not known.
However, since the elements of A are upper bounds for the elements of F ′(ν), we can at
least qualitatively conclude that in the case of non-vanishing local fields, the transition
temperature will be lower.

5.3. The antiferromagnetic case

This is similar to the ferromagnetic case; however, the eigenvalue is now −1 instead of
+1. This yields the following equation for the transition temperature:

1 = 〈tanh(−βJ)〉
(
〈d2〉
〈d〉 − 1

)

. (30)

Again the prediction turns out to be quite accurate (see figure 2), as was to be expected.
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5.4. Estimating the PA–SG transition temperature

For the paramagnet–spin-glass phase transition, we can perform a similar calculation, now
assuming that x is an eigenvector with eigenvalue λ on the complex unit circle:

E
(
|xij |2 | di

)
= E



|tanh(βJij)|2
∣
∣
∣
∣
∣
∣

∑

k∈Ni\j

xki

∣
∣
∣
∣
∣
∣

2∣∣
∣
∣
∣
∣
di





=
〈
tanh2(βJ)

〉
E





∣
∣
∣
∣
∣
∣

∑

k∈Ni\j

xki

∣
∣
∣
∣
∣
∣

2∣∣
∣
∣
∣
∣
di





≈
〈
tanh2(βJ)

〉
E




∑

k∈Ni\j

|xki|2
∣
∣
∣
∣
∣
∣
di





≈
〈
tanh2(βJ)

〉
(di − 1)

∑

dk

P (dk | di, k ∈ Ni)E
(
|xki|2 | di

)
,

where, in addition to the assumptions in the PA–FE case, we assumed that the correlations
between the various xki can be neglected. Again, we can only motivate this assumption
in that it appears to give correct results.

Using relation (28), we find a non-trivial self-consistent solution E
(
|xij |2 | di

)
∝

(di − 1), if the following equation holds:

1 =
〈
tanh2(βJ)

〉
(
〈d2〉
〈d〉 − 1

)

. (31)

This result is again identical to the one obtained by the cavity method [25], as expected.
As illustrated in figure 2 (the dashed line), the accuracy is somewhat less than that of the
ferromagnetic transition, but is nevertheless quite good, even for N = 50.

For completeness we would like to state that the numerical results reported in [23], in
which we numerically studied the behaviour of the lowest eigenvalue of U , are accurately
described by the predictions (29) and (31), which supports the hypothesis that these
notions coincide in the N → ∞ limit.

6. Conclusions

We have derived conditions for the local stability of parallel LBP fixed points, both in the
undamped and damped cases for binary networks with pairwise interactions. We have
shown how these relate to the sufficient conditions for uniqueness of the LBP fixed point
and convergence to this fixed point. In particular, we have shown that these sufficient
conditions are sharp in the ferromagnetic case, exactly describing the pitchfork bifurcation
of the paramagnetic fixed point into two ferromagnetic fixed points. For undamped LBP,
the local stability of the paramagnetic fixed point (for vanishing local fields) is invariant
under a sign change of the interactions. For antiferromagnetic interactions, parallel
undamped LBP stops converging at the PA–FE transition temperature. Damping or using
a sequential update scheme remedies this defect. However, although the paramagnetic
minimum of the Bethe free energy does not disappear, the trivial fixed point becomes
locally unstable even for damped LBP at roughly the PA–SG transition temperature.
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Finally, for interactions that are dominantly of the spin-glass type, using damping only
marginally extends the domain of convergence of LBP.

We estimated the PA–FE transition temperature and the PA–SG transition
temperature for arbitrary degree distribution random graphs. The results are in good
agreement with numerical simulations. How this relates to the AT line is an open question
and beyond the scope of this work.

We believe that the case that we have considered in detail in this work, namely
vanishing local fields θi = 0, is actually the worst-case scenario: numerically it turns out
that adding local fields helps LBP to converge more quickly. We have no proof for this
conjecture at the moment; the local fields make an analytical analysis more difficult and
we have not yet been able to extend the analysis to this more general setting. We leave
the generalization to non-zero local fields as possible future work.
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Appendix: Proof of theorem 2

For a square matrix B, we write B ≥ 0 iff all entries of B are non-negative. σ(B) is the
set of all eigenvalues of B, ρ(B) is the spectral radius of B, i.e. ρ(B) := max |σ(B)|. We
will use the following generalization of Perron’s theorem:

Theorem 3. If B ≥ 0, then the spectral radius ρ(B) ∈ σ(B) and there exists an associated
eigenvector x ≥ 0 such that Bx = ρ(B)x.

Proof. See [30, p 670]. 
�

Applying this theorem to the matrix B defined in (20), we deduce the existence of
an eigenvector x ≥ 0 with Bx = ρ(B)x. Writing Cij := tanh(β |Jij|) and λ := ρ(B), we
derive

xij = λ−1Cij

(
∑

k∈Ni

xki − xji

)

= λ−1Cij




∑

k∈Ni

xki − λ−1Cji




∑

k∈Nj

xkj − xij







 .

Defining Xi :=
∑

k∈Ni
xki, we obtain, by summing over i ∈ Nj ,

Xj =
∑

i∈Nj

λ
Cij

λ2 − CijCji
Xi −

∑

i∈Nj

CijCji

λ2 − CijCji
Xj ,

doi:10.1088/1742-5468/2005/11/P11012 17

http://dx.doi.org/10.1088/1742-5468/2005/11/P11012


J.S
tat.M

ech.
(2005)

P
11012

Properties of Bethe approximation and LBP on binary networks

i.e. X is an eigenvector with eigenvalue 1 of the matrix

Mij
ρ(B) tanh(β |Jij|)

ρ(B)2 − tanh2(β |Jij|)
− δij

∑

k∈Ni

tanh2(β |Jik|)
ρ(B)2 − tanh2(β |Jik|)

. (A.1)

Now, if all Jij are positive, and if ρ(B) = 1, this matrix is exactly I −U , where Uij is
defined in (24). Hence, since in this case B = F ′(0), the critical temperature at which the
paramagnetic LBP fixed point becomes unstable coincides with the matrix I − U having
an eigenvalue 1, or in other words U having eigenvalue 0. Thus the onset of instability of
the paramagnetic LBP fixed point in this case exactly coincides with the disappearance
of the paramagnetic Bethe free energy minimum.
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