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Remote Sensing Feature Selection by
Kernel Dependence Measures
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Abstract—This letter introduces a nonlinear measure of inde-
pendence between random variables for remote sensing supervised
feature selection. The so-called Hilbert-Schmidt independence
criterion (HSIC) is a kernel method for evaluating statistical
dependence and it is based on computing the Hilbert-Schmidt
norm of the cross-covariance operator of mapped samples in the
corresponding Hilbert spaces. The HSIC empirical estimator is
easy to compute and has good theoretical and practical properties.
Rather than using this estimate for maximizing the dependence
between the selected features and the class labels, we propose
the more sensitive criterion of minimizing the associated HSIC
p-value. Results in multispectral, hyperspectral, and SAR data
feature selection for classification show the good performance of
the proposed approach.

Index Terms—Dependence estimation, feature selection, image
classification, kernel methods, support vector machine (SVM).

1. INTRODUCTION

EDUCING the dimensionality of the data while keeping

the most of its expressive power is the goal of feature
selection, and a great many methods have been proposed,
either filters, wrappers, or embedded [1], [2]. Filters use an
indirect measure of the quality of the selected features, e.g.,
the correlation between each input feature (spectral channel)
and the observed output (class label). In wrapper methods, a
fitness criterion between the observed and predicted outputs by
a classifier is directly optimized. Filters converge much faster
than wrapper methods, and select features independently of the
subsequent classifier, which facilitates feature interpretation.
Note that often the user is much more interested in under-
standing the relative relevance of the considered features than
in minimizing a classification error. Filter methods have been
extensively studied in remote sensing. In [3], a feature-selection
procedure was proposed to combine spectral channels, while a
canonical correlation method was applied in [4] to sensors with
overlapping bands. Strategies to constrain the search space
were deployed in [5]. The main problems with most of the filter
methods are the following: 1) The relationship between sets of
features and the class labels is not jointly considered, as they
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usually use pairwise feature—label measurements, and 2) they
do assume either linear dependences (e.g., by using Pearson’s
correlation) or ad hoc criteria of class separability (e.g., mean
class differences). These problems reduce their usefulness
for classification and have motivated the recent interest in
wrappers and embedded methods. For example, recursive
feature elimination [6] or genetic algorithms [7] optimizing
the accuracy of support vector machines (SVM) have been
successfully used in remote sensing data analysis. The main
problem of these methods is their excessive computational cost,
particularly high in the case of hyperspectral images, which
often requires including heuristics in the procedure. Besides,
these feature-selection methods may suffer from overfitting
when working with a small number of training samples, as it is
typically the case in remote sensing data classification.

Here we introduce a filter approach based on measuring the
nonlinear dependence between features and class labels. The
so-called Hilbert—Schmidt independence criterion (HSIC) is a
kernel method for evaluating statistical dependence between
random variables. It is based on computing the Hilbert—Schmidt
norm of the cross-covariance operator of mapped samples in
the corresponding Hilbert spaces [8]. The so-called backward
HSIC (BAHSIC) procedure iteratively removes the feature that
is least important by maximizing the dependence of the remain-
ing features on the class labels. The method was originally
presented in [9] for general-purpose applications and further
used in a bioinformatics application [10]. Here, we analyze
its capabilities in the specific context of remote sensing image
classification. Additionally, unlike the original method [9], we
propose to minimize the p-value associated to the empirical
HSIC test rather than maximizing the HSIC value.

The main problems of both filter and wrapper methods
described before are alleviated with the use of HSIC: 1) Good
robustness capabilities to high dimensionality and low number
of training samples are typically observed for kernel methods,
particularly in remote sensing data processing [11]; 2) the
criterion is not restricted to estimate pairwise dependences but
captures higher order relations between features; and 3) the
proposed method is very simple to implement and provides
good and generally interpretable results. Unlike most of the
feature-selection methods, the proposed HSIC criterion can
be directly applied to binary, multiclass, or even regression
problems by choosing appropriate kernels. Finally, it can be
demonstrated that the proposed method contains other feature-
selection procedures as particular cases.

II. KERNEL METHODS FOR MEASURING INDEPENDENCE

This section presents a criterion for measuring general forms
of dependence between random variables.
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A. Linear Dependence Between Random Variables

Let us consider two spaces X' C R% and ) C R%, on which
we jointly sample observation pairs (x,y) from distribution
Py, . The covariance matrix can be defined as

Cuy = Exy(xy ") — Ex(x)Ey(y") ()

where Ey, is the expectation with respect to Py, Ey is the
expectation with respect to the marginal distribution Py (here
and in the following, we assume that all these quantities exist),
and y ' is the transpose of y. The covariance matrix encodes
all first-order dependences between the random variables. A
statistic that efficiently summarizes the content of this matrix is
its Hilbert—Schmidt norm. The square of this norm is equivalent
to the squared sum of its eigenvalues 7;, ||Cxy||%g = >, V2
This quantity is zero if and only if there exists no first-order de-
pendence between x and y, but is limited. Note that the Hilbert—
Schmidt norm is limited to the detection of first-order relations,
and thus, more complex (higher order) effects cannot be captured.

B. Measuring Dependence With Kernels

The nonlinear extension of the notion of covariance was
proposed in [8] and [12]. Essentially, let us define a (possibly
nonlinear) mapping ¢ : X — F such that the inner product
between features is given by a positive definite (p.d.) kernel
function k;(x,x") = (¢(x), ¢(x')). The feature space F has
the structure of a reproducing kernel Hilbert space (RKHS). Let
us now denote another feature map v : ) — G with associated
p.d. kernel function ky,(y,y’) = (¥(y),%¥(y’)). Then, it is
possible to define a cross-covariance operator between these
feature maps, similar to the covariance matrix in (1). The cross-
covariance operator is a linear operator Cxy : G — JF such that

ny = Exy [(¢(X) - .“X) ® (¢(Y) - .“y)] ()

where ® is the tensor product, i, = Ex[¢(x)], and p, =
Ey [ (y)]. See more details in [13] and [14]. The squared norm
of the cross-covariance operator, ||Cxy [|% is called the HSIC
and can be expressed in terms of kernels [8]

HSIC(F, G, Pxy) = |[Cxy lIfis
= Exxryy [k (%, %)y (v, y')]
+ Eaxr [k (x, )] Eyy [ky( ¥
— 2Exy [Exs [ko(x, %) By Ky (v, y')]]

where Eyx/yy- is the expectation over both (x, y) ~ Pyy and an
additional pair of variables (x’,y’) ~ Px, drawn independently
according to the same law.

Now, given a sample dataset Z ={(x1,y1), - - - , (X, ¥Ym )} Of
size m drawn from Py, an empirical estimator of HSIC is [8]

1
HSIC(F, G, Pry) = —5 Tr(K, HK, H) 3)

where Tr is the trace, K, and K, are the kernel matrices for the
data x and the labels y, respectively, and H;; = 0;; — (1/m)
centers the data and the label features in F and G. Here, &
represents the Kronecker symbol, where §; ; = 1 if ¢ = 7, and
zero otherwise.

Note that the actual HSIC is the Hilbert—-Schmidt norm of
an operator mapping between potentially infinite dimensional
spaces, and thus, would give rise to an infinitely large matrix.
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Fig. 1. CDF of HSIC under Hg for m = 100 samples obtained empirically
using (blue line) 1000 independent draws of HSIC and approximated using
(black line) the two-parameter Gamma distribution of (4). We also indicate
the threshold for the HSIC test 6, which corresponds to the inverse cdf of the

significance level & = 0.05, and the p-value which corresponds to HSIC.

However, due to the kernelization, the empirical HSIC only
depends on computable matrices of size m x m.

C. Setting the HSIC Decision Threshold

In [12, Ch. 4], several statistical tests of independence based
on the empirical HSIC estimator (3) are revised. The test should
discern between the null hypothesis Hy : Py, = PxPy (fac-
torization means independence) and the alternative hypothesis
H; : Pyy # PxPy. This is done by comparing the test statistic
HSIC with a given threshold.! Among the possibilities to define
such a threshold over the HSIC estimate, a reasonable one is to
approximate the null distribution as a two-parameter gamma

distribution, as suggested in [15]
¢ le

mbeT(a)

—x/b

HSIC ~ )

where a = E[HSIC]?/V[HSIC] and b = V[HSIC]/E[HSIC],
whose detailed expressions can be found in [12, Th. 43 and
44]. Then, the threshold 6 is computed through the inverse
cumulative density function (cdf) of the 1 — o value, where «
is the adopted significance level (typically, a = 0.05 or o =
0.01). Two random variables are then considered dependent if

ASIC > 0, and independent otherwise. Alternatively, as pro-
posed here, one can directly compute the HSIC p-value from
the HSIC estimate and its cdf to test dependence (see Fig. 1).
The p-value represents the probability of obtaining a result at
least as extreme as the actually observed, assuming that the null
hypothesis is true.

D. HSIC for Feature Selection

In [9], a method for using HSIC as a criterion for fea-
ture selection was introduced. The method is summarized in

'The null hypothesis Hy is accepted if the test is lower than the threshold.
The Type I error is defined as the probability of rejecting Hyp based on the
observed sample, despite x and y being independent. Conversely, the Type 11
error is the probability of accepting the null hypothesis when the underlying
variables are dependent. The level o of a test is an upper bound on the Type I
error and is used to set the test threshold.
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Algorithm 1. HSIC is zero if the spectral bands and class labels
are fully independent. Since we search for the most dependent
features on the labels, a possibility is to select features that
maximize HSIC. The method starts with all features S and
iteratively removes the feature that is least dependent on the
class labels (step 3a in Algorithm 1). Note that each time a
feature is removed, the kernel parameter must be estimated and
HSIC and its p-value computed. Thus, the BAHSIC method
iteratively generates a feature list S* in increasing level of
importance. After ranking the features, one only has to pick up a
number of highly relevant features. Although forward selection
is computationally more efficient, backward elimination pro-
vides better features in general, since the features are assessed
within the context of all others.

Algorithm 1 Feature selection with HSIC-based criteria. The
proposed BAHSIC,, method replaces the maximization of HSIC
in step 3a with the minimization of the HSIC p-value in 3b.

Input: Full set of features .S, training data set {x;, y; }

Output: Ranking of features, S*

1: 5%

repeat

for each j € S do
2: Estimate kernel width ¢; from data x; (S \ {j})
end for
3a: j < argmax; HSIC(0;, S\ {j})
3b: j < argmin; HSIC, (0,5 \ {j})
4: S — S\ {j}
5:8% — (S*, 4)
until S = ()

In this letter, we propose to alternatively select features by
minimizing the HSIC p-value rather than maximizing the HSIC
value (step 3b in Algorithm 1). We observed that the p-value is
a more sensitive criterion for guiding the selection. Hence, we
call the method BAHSIC,,.

The algorithm relies on computing HSIC in each iteration,
and thus, one could possibly optimize the kernel parameters
(step 2 in Algorithm 1). In our experiments, however, we
estimated the kernel width from the data as the median distance
among all training samples. This allows a very fast convergence
of the method, even if suboptimal.

E. Selection of the Kernels

Note that the proposed method has two kernels: the input data
kernel %, and the output label kernel &, [cf., (3)]. Concerning
the data kernel, one can resort to common kernels such as
the polynomial or the radial basis function (RBF), k(x;,x;) =
exp(—||x; — x;]|?/20?), 0 € R.In the context of dependence
estimation, however, it is important to note that from [8, Th. 4],
if 7 and G are RKHSs with universal kernels k, and k,
[16], then HSIC(F,G,Py«y) = 0 if and only if x and y are
independent. This is why the RBF or Laplacian kernels (which
are universal) are preferred in this specific kernel method over
polynomial kernels.

The output (labels) kernel may be defined depending on the
task (classification, regression, sorting, or visualization) and
the known relations in the output. This is certainly a nice
property of the method. For the binary ({0, 1}-valued) case,
the kernel function can be defined as k,(y,y’) = (1/m4)
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(1/m_)y"y, where my and m_ are the relative number of
samples for each class. This corresponds to making the criterion
independent of the specific class sizes. For the case of k
classes, several possibilities arise. In this letter, we adjusted
the inner product between classes and defined k,(y,y’) =
(¥(y),¥(y")), where ¢ (y) = 1y (m/my(m —my)) — 2,2 =
[(m—m1)~Y, ..., (m —my) 1|7, and 1, represents the y-th
unit vector in R¥ (see [9] for details).

F. Computational Issues

Note that the HSIC empirical estimate is very simple to
implement as it basically requires computing the trace of the
centered kernel matrices [cf., (3)]. In fact, HSIC(F, G, Pyy ) can
be computed in O(m?) time, while many other kernel methods
cost at least O(m?). Nevertheless, this may be a problem when
working with many labeled data points, which fortunately is not
typically the case in remote sensing data classification.

G. Relation to Other Feature-Selection Methods

An important aspect of BAHSIC is its generality. It can be
demonstrated that the method contains other feature-selection
methods as particular cases [9]. For instance, BAHSIC reduces
to the standard Pearson’s correlation when using a linear kernel
in both input and output spaces. Similarly, with the proper
normalization of the data and use of the linear kernel, BAHSIC
reduces to the ¢-test criterion, B-statistic, or the shrunken cen-
troid methods for feature selection. Nevertheless, other methods
such as the mutual information (MI) cannot be seen as examples
of HSIC.

III. DATA COLLECTION

Several images are considered in the experiments, for both

binary and multiclass problems:

1) Naples 99. This data set consists of images from ERS2
synthetic aperture radar (SAR) and Landsat TM sensors
acquired in 1999 over Naples (Italy). The problem is
binary classification: detection of urban versus nonurban
areas. The available features were the seven Landsat
bands, two SAR backscattering intensities (0-35 days),
and the SAR interferometric coherence. We used all
seven Landsat TM spectral bands and appended two SAR
features: the computed coherence C'o and a spatially fil-
tered version of the coherence F'C'o, which was specially
designed to increase the urban-area discrimination [17].

2) FCI. The Flightline C1 data is a 12-band multispectral
image taken over Tippecanoe County, Indiana (U.S.) by
the M7 scanner in June 1966 [18]. The image is 949 x
220 pixels and contains ten classes, mainly crop types. A
ground survey of 70 847 pixels has been used.

3) Salinas. This 224-band Airborne Visible InfraRed
Imaging Spectrometer (AVIRIS) hyperspectral image
was acquired over an agricultural area of California, U.S.
A total of 16 crop classes were labeled. This is a high-
resolution scene with pixels of 3.7 m. The high number
of spectrally similar subclasses makes the classification
problem very complex.

4) Pavia. This is an image acquired by the DAIS7915 sensor
over the city of Pavia (Italy), and constitutes a challeng-
ing nine-class urban classification problem dominated by

Authorized licensed use limited to: Universidad de Valencia. Downloaded on May 18,2010 at 16:45:56 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

590 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 7, NO. 3, JULY 2010
Naples99 FC1 Salinas Pavia
- 038 0. 1 .
X - .
_ 0.9
0.94 i 0.7 0.5 , é
g 09 go. 204 207
3 k] k] k]
k71 »n [ Iz V" "
B 0. —R = 0.5 —R % 0.3] 2 0.6] —=R
7 —M —mi G ; —Mi
k« —RFE —RFE ’ —RFE
08 —Lo 0.4 —L0 0.2 —L0 —L0
| —BAHSIC —BAHSIC I/ —BAHSIC 04rg/ % —BAHSIC
| BAHSICp, BAHSICp. or BAHSICp BAHSICp
088 2 4 6 8 10 0 5 10 15 o 5 10 15 20 0 5 10 15 20
# Features # Features # Features # Features

Fig. 2. Kappa statistics in the test set for different numbers of selected features by several algorithms and data sets. The average results over ten realizations are
shown, and the error bars indicate the 95% confidence intervals for the mean value.

directional features and relatively high spatial resolution
(5-m pixels). Following previous works on classification
of this image, we took into account only 40 spectral bands
of reflective energy in the range [0.5, 1.76] pm, and thus
skipped thermal IR bands and middle IR bands above
1958 nm.

Note that the selected images cover the most significant
remote sensing situations and sensors: multispectral (Landsat,
FC1), hyperspectral (AVIRIS, DAIS), ERS2 SAR data, and
high-resolution imagery (FC1, DAIS).

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

In all cases, we compare the performance of BAHSIC and
BAHSIC,, with standard and advanced feature-selection meth-
ods: Pearson’s correlation R; MI; SVM recursive feature elim-
ination (RFE) [19], and the Ly-norm approach [20]. Note also
that due to the method’s generality, we are implicitly comparing
performance of other methods (cf., Section II-G). The SVM-
RFE algorithm analyzes the relevance of input variables by
estimating changes in the cost function, AJ, = ||w|| — ||w.],
where w represents the SVM weight vector in the RKHS for the
complete set of input variables and w,, denotes the SVM weight
vector when variable u is removed. The Lg-norm approach
iteratively seeks for the maximum classification accuracy of a
linear SVM while essentially restricting ||w||o < r, where 7 is
the desired number of features.

In the experiments, we fixed different numbers of selected
features and run all the methods with 100 randomly selected
samples only. The selected features are then used for SVM
classification with an RBF kernel. SVMs are trained following
the standard tenfold cross-validation method on the same 100
training examples. The kernel width was tuned in the range o =
{1073,...,103} and the SVM regularization parameter was
varied in C'= {107!,...,103}. The procedure was repeated
ten times with different selected samples. Fig. 2 shows the
kappa statistic x [21] in the test set (whole labeled data in the
images) as a function of the number of selected features. We
show the averaged results and the 95% confidence intervals over
the ten realizations.

B. Binary Classifications

We used the Naples95 data set described in Section III for
binary classification. The numerical results are shown in Fig. 2
for all the considered feature-selection methods and different

numbers of selected features. Note that the proposed HSIC,
selection consistently yields very good results, particularly
when more than two features are selected. This is because
the BAHSIC,, method selects the coherence and the spatially
filtered coherence features most of the times (see Fig. 3). This
selection matches that previously reported with other methods
in [17]. Only BAHSIC and MI select the F'C'o feature as one of
the top five features. It is also observed that BAHSIC,, focuses
on the combination of the thermal and the shortwave IR (SWIR)
bands and pays less attention to the visible spectral bands (as
the rest of the methods do). This selection is quite consistent
in this particular problem: SWIR bands are, in general, useful
to detect soil types and soil disturbance since moisture is an
important characteristic of soil structure.

C. Multiclass Problems

Results in Fig. 2 show that in all the considered multiclass
scenarios, a noticeable gain is obtained by using the p-value
to guide HSIC in feature selection. The gain is particularly
important when few features are selected. For instance, by
selecting the best two features of each method only, average
HSIC,, gain in overall accuracy is around 8%. For a moderate
number of selected features, the HSIC,, performance saturates
and generally outperforms the rest of the methods. Only for a
higher number of features, MI shows a slight improvement. It
must be noted that RFE performs poorly in all databases, which
was already reported elsewhere [22].

The numerical results can be explained in physical terms by
looking at the frequency with which the methods select the top
five features (see Fig. 3). The most important observation is
that, in all data sets, the BAHSIC,, method covers the spectrum
more uniformly than the others. This typically results in non-
redundant selected features. This behavior is also observed for
BAHSIC and MI, which often perform very well (see Fig. 2).
The poor numerical results yielded by RFE is clearly due to the
low level of feature diversity accounted in the selection. The
Lo method follows a similar behavior in “Pavia” and “Salinas”
images.

In the agricultural area of the “FC1” image, BAHSIC,
(and similarly, BAHSIC) more or less uniformly covers the
whole spectral range but more focused on selecting features
that account for cellular pigment (carotenoids) absorption and
chlorophyll absorption (500-700 nm). In the complex Salinas
scenario, BAHSIC,, (and also BAHSIC and MI) again selects
the bands characterizing leaf pigments but now in combination
with some spectral bands around 1 pm (related to plant cell
structure) and bands close to 2.2 um to take into consideration
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soil moisture and leaf water content. Finally, for the case of the
Pavia image, BAHSIC,, uniformly covers the whole spectrum,
trying to adapt to the high diversity of natural and man-made
covers present in the scene. Interestingly, MI finds bands in the
range 1000-1600 nm highly dependent on the class labels, sug-
gesting a biased selection toward the detection of the majoritary
classes (water and trees) in the image.

V. DISCUSSION AND CONCLUSION

This letter has presented a kernel method for remote sensing
feature selection based on measuring nonlinear dependence
between the spectral bands and the class labels. The method
has very good theoretical and practical properties. We proposed
to remove features by minimizing the HSIC p-value rather than
maximizing the HSIC value itself between features and class
labels. We tested the method in multisource, multispectral, and
hyperspectral image-classification problems, both under urban
and agricultural areas. The proposed method outperformed
other standard and advanced methods, both filter and wrappers.
The good numerical performance was complemented with the
interpretability of the results. Kernel-based methods are par-
ticularly well suited for cases with relatively low number of
labeled samples per dimension. For higher numbers of labeled
samples, other methods for feature selection, such as filtering
using MI, can be more efficient while yielding comparable
performance. Further research is required to investigate the
influence of the kernel width on the BAHSIC,, ranked features
and to adapt the HSIC for nonindependent identically distrib-
uted samples which is the case in image processing.
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