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Abstract

While conventional approaches to causal inference are mainly based on con-
ditional (in)dependences, recent methods also account for the shape of (con-
ditional) distributions. The idea is that the causal hypothesis “X causes
Y ” imposes that the marginal distribution PX and the conditional distri-
bution PY |X represent independent mechanisms of nature. Recently it has
been postulated that the shortest description of the joint distribution PX,Y
should therefore be given by separate descriptions of PX and PY |X . Since
description length in the sense of Kolmogorov complexity is uncomputable,
practical implementations rely on other notions of independence. Here we
define independence via orthogonality in information space. This way, we can
explicitly describe the kind of dependence that occur between PY and PX|Y
making the causal hypothesis “Y causes X” implausible. Remarkably, this
asymmetry between cause and effect becomes particularly simple if X and Y
are deterministically related. We present an inference method that works in
this case. We also discuss some theoretical results for the non-deterministic
case although it is not clear how to employ them for a more general inference
method.
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1. Introduction

The problem of inferring whether X causes Y (write X → Y ) or Y causes
X from observations (x1, y1), . . . , (xm, ym) that are i.i.d. drawn from PX,Y
is a particularly challenging task for causal inference [1]. Although this re-
stricted problem ignores other important problems of causal inference (i.e.,
unobserved common causes or bidirectional influence), it is useful for study-
ing statistical asymmetries between cause and effect. Conventional methods
for causal inference [2, 3] focus on conditional independences and thus require
observations from at least three variables.

Extending an idea in [4], [5] postulates that X → Y is only acceptable
as causal hypothesis if the shortest description of PX,Y is given by separate
descriptions of PY |X and PX . Here description length is understood in the
sense of algorithmic information (“Kolmogorov complexity”) [6, 7, 8]. Note
that the postulate is equivalent to saying that PY |X and PX are algorithmi-
cally independent in the sense that knowing PX does not enable a shorter
description of PY |X and vice versa. To show that this helps in distinguish-
ing between cause and effect for just two observed variables, [5] constructed
toy models of causal mechanisms where the causal structure X → Y yields
algorithmic dependences between PX|Y and PY . Even though algorithmic
independence between Pcause and Peffect|cause is an appealing formalization of
independence, practical methods must be based on computable criteria.

[9] described a potential asymmetry between cause and effect where in-
dependence is meant in terms of statistical independence between the cause
and the noise term that occurs in the causal mechanism: If Y is a function
of X up to an additive noise term that is statistically independent of X, i.e.,

Y = f(X) + E with E ⊥⊥ X , (1)

then there is usually (up to some exceptions like the bivariate Gaussian)
no such additive noise model from Y to X. In other words, writing X as
X = g(Y ) + Ẽ with some function g will not render the residual term Ẽ
statistically independent of Y . [10] generalizes the model class to

Y = h(f(X) + E) with E ⊥⊥ X , (2)

and show that such a “post-nonlinear (PNL) model” also exists in at most
one direction, except for some special cases. If PX,Y is consistent with (1) or
(2), respectively, in one direction but not the other, one infers that direction
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to be the causal one implied by the corresponding model. For the model (1)
it has been shown [11] that this kind of reasoning is justified by the above
algorithmic independence principle.

Note that these inference methods do not assume that causal relations are
always of the above form. They only decide for one of the causal directions
if one and only one direction admits such a model. The idea is the following:
if X → Y is the correct model, but not of the additive noise form, it is
rather unlikely that it generates a joint distribution that admits an additive
noise model in the opposite direction. The reason is that this would require
rather contrived adjustments between PX (the marginal distribution of the
hypothetical cause) and PY |X (the conditional distribution of the effect, given
the cause) [11]. This article develops an information-geometric principle
that does not require the restricted class of additive noise or post-nonlinear
models. To this end, we revisit additive noise models in Section 2 and show
that entropies can play a key role in describing the kind of dependences
between PX|Y and PY that can occur if X causes Y . This motivates our
information geometric perspective developed in Section 3, which results in
an inference method for deterministic causal relations in 4, with an outlook
for the non-deterministic case in Appendix Appendix A. The table in Fig. 1
shows how the main results are structured.

Readers who are only interested in our inference method may focus on
Section 4, with Subsection 4.3 and 4.4 as its main parts. The other sections
provide a general background and describe a large class of asymmetries be-
tween cause and effect that could be helpful for developing other information-
theoretic methods in the future.

2. Information theoretic view on additive noise models

We consider the additive noise model (1) in the low noise regime (see
Fig. 2) and show how the relationship between the input distribution and
the conditional one is different for both directions. We use the following
notational conventions. PY |x is the distribution of Y , given a fixed value
x while PY |X denotes the entire conditional distribution. The range of a
random variable X will be denoted by DX . S(PY |x) denotes the (differential)
Shannon entropy of PY |x for fixed x. The function x 7→ S(PY |x) will also
be called the conditional entropy function. Throughout the paper we will
assume that all distributions have densities with respect to a fixed reference
measure (e.g., the Lebesgue measure for real-valued variables or the counting
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Section Contents Main Reference

Section 3 Postulating independence conditions Postulate 1 and
(h1) - (h3) for Pcause and Peffect|cause Definition 1

Justifying the conditions Lemmas 1,2

Rephrasing (h1)-(h3) as orthogonality Theorem 1

Section 4 Implications of (h3) Theorem 2
for deterministic causality

Generalizing (h3) via exponential families Postulate 2

Inference method for deterministic case Subsections 4.3 and 4.4
based on the generalized condition (h3)

Appendix Appendix A Outlook: employing orthogonality Lemma 9 and 10
for inferring non-deterministic relations
(toy examples, negative results)

Figure 1: Structure of the main results
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measure for discrete variables). This measure will never appear explicitly and
should not be confused with reference probability distributions that occur all
over the article. By slightly overloading notation, PX will stand for both the
distribution and the density x 7→ PX(x). We will also write P (x) instead of
PX(x) whenever this causes no confusion. For discrete variables X, integrals
of the form

∫
· · ·P (x)dx will be understood as sums by interpreting dx as

dµ(x) where µ denotes the counting measure.
Regarding (1) we observe that E ⊥⊥ X ensures that the conditional en-

tropy function S(PY |x) is constant in x and coincides with the conditional
entropy S(PY |X) (defined by the average

∫
S(PY |x)P (x)dx). In studying

how PY and PX|Y are then related we first assume that PX is uniform. Then,
P (y) ≈ PX(f−1(y))·f−1′(y) is large for those y-values where |f−1′(y)| is large.
At the same time, the entropy S(PX|y) is large for y-values in regions with
large |f−1′(y)| (see Fig. 2). Hence, large entropy S(PX|y) correlates with high
density P (y), assuming that P (x) is constant on the interval under consid-
eration. If PX is not the uniform distribution, high values of P (y) occur at
points where both |f−1′(y)| and PX(f−1(y)) are high. We argue later that if
the peaks of P (x) do not correlate with the slope of f then the qualitative
argument above still holds and S(PX|y) again correlates with P (y). This
reasoning will be formalized in Section 3.

The first information geometric inference principle that we are going to
state in the next section no longer assumes that the entropy S(PY |x) is con-
stant in x if X → Y is the true causal direction. Instead, it postulates that
regions of large S(PY |x) do not correlate with regions of large density P (x).
The example above shows that dependences between PY and PX|Y occurring
for the wrong causal direction can appear on the level of correlations be-
tween information theoretic expressions (like conditional entropy) computed
from the conditional PX|y and the density P (y). We will show that correla-
tions of this type can be phrased as an orthogonality relation in the sense of
information geometry.

3. A class of testable independence relations

The intention of this section is to postulate independence conditions be-
tween PY |X and PX that can be tested empirically. We will describe several
options to solve this task.
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y­value with large  S(PX|y) and large density P(y)

Figure 2: Functional relation with small noise. The conditional entropy function S(PX|y)
is high at regions with high slope of f−1(y), i.e., small slope of f at this point.

3.1. General structure of our independence relations

The following postulate describes the general structure that all our pos-
tulates share:

Postulate 1 (general structure of independence).
Assume that X causes Y . Let x 7→ h(x) ∈ R be any function for which h(x)
describes local properties of the conditional PY |X at the point X = x.1 Then
the “structure function” h and PX are likely to satisfy∫

h(x)P (x)dx ≈
∫
h(x)UX(x)dx , (3)

where UX is a reference density for X (not necessarily uniform).

Note that the difference between both sides of (3) can be rephrased as a
covariance if we formally consider h and PX/UX as functions of a random

1Note that we have avoided the more concise formulation “h(x) describes properties
of the conditional PY |x” for the following reason: For deterministic relations Y = f(X),
the function h(x) := f ′(x) expresses a property of PY |X that is local at X = x, but h(x)
cannot be derived from PY |x alone.
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variable X with distribution UX :∫
h(x)P (x)dx−

∫
h(x)U(x)dx (4)

=

∫
h(x)

P (x)

U(x)
U(x)dx−

∫
h(x)U(x)dx

∫
P (x)

U(x)
U(x)dx

=: CovUX

(
h,
PX
UX

)
.

Therefore (3) formalizes uncorrelatedness between the functions h and PX/UX ,
which is justified by the idea that the way PX differs from UX is independent
of h.

The postulate remains vague regarding how to choose h and UX . We will
later discuss different reasonable choices, for instance h(x) := S(PY |x) (for
non-deterministic relations), h(x) := f ′(x) (for deterministic ones) and also
h(x) := log f ′(x) (for deterministic monotonically increasing relations). We
recommend to choose “non-informative” distributions like uniform ones or
Gaussians for UX . If we assume that “typical” choices of PX (as long as the
choice is independent of h) yield almost the same integral, we also have to
assume that changing UX to some U ′X does not matter too much as long as
we have chosen U ′X independently of h. This suggests some robustness under
changing the reference measure.

3.2. Probabilistic models as justification
Even after specifying the reference density UX and the map from the

conditional PY |X to its structure function h, a mathematical justification
of (3) can only be given within a probabilistic model about how “nature
chooses PX” or how it “chooses PY |X”. To show this, we now consider a
random process that generates functions h (which can equivalently be seen
as generating random conditionals PY |X):

Lemma 1 (interval-wise random generation of PY |X).
Let X, Y be real-valued. Let rj > 0 with j ∈ Z be random numbers iid
drawn from a distribution Q(r) with standard deviation σr. We then define a
piecewise constant function h via h(x) := rj for x ∈ [j, j + 1) (Fig. 3 shows
two options how h may correspond to a conditional PY |X). We then have for
every c > 0,∣∣∣∣∫ h(x)P (x)dx−

∫
h(x)U(x)dx

∣∣∣∣ ≤ c σr

√√√√∑
j

(∫ j+1

j

P (x)− U(x) dx

)2

,
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Figure 3: Visualization of two options for interval-wise generation of a conditional PY |X
via dice throws rj . Left: PY |X corresponding to Y = X +E where the distribution of E|x
is the uniform distribution on the interval [0, h(x)]. Right: the dice determines the slope
of f for Y = f(X) via f ′(x) := h(x).

with probability 1− 1/c2 or higher.

Proof: This is because∫
h(x)(P (x)− U(x))dx =

∑
j

rj

(∫ j+1

j

P (x)− U(x) dx

)
is the sum of independent random variables, each having variance

σ2
r

(∫ j+1

j

P (x)− U(x) dx

)2

.

Then the statement follows from Chebyshev’s inequality, noting that the
expected value of

∫
h(x)

(
P (x)− U(x)

)
dx vanishes. �.

The example is instructive because it shows that (3) is likely to hold
regardless of PX and UX provided that the following conditions are satisfied:
First, both distributions PX and UX have been chosen independently and
independently of PY |X . Second, both distributions are sufficiently spread out
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such that β :=
∑

j(
∫ j+1

j
P (x)− U(x) dx)2 is small. Roughly speaking, if PX

and UX have width n, then β ∈ O(1/n) and hence (3) holds up to an error
in O(1/

√
n). Neglecting one of these conditions, one can easily construct

counter examples: First, if one of the distributions PX or UX , say UX , is
constructed after having seen all the rj, UX can be constructed such that
PX − UX is positive for all intervals [j, j + 1) where rj is large and negative
for small rj. This results in

∫
h(x)U(x)dx being systematically greater than∫

h(x)U(x)dx. Second, if one of the distributions, say UX , is supported by
one interval [j, j + 1) only, we have

∫
h(x)U(x)dx = rj, i.e, the right hand

side of (3) depends on a single rj only and can therefore strongly deviate
from

∫
h(x)P (x)dx.

One can also construct a probabilistic model where PY |X and thus h
is fixed and instead PX is generated randomly, for instance by the following
procedure. On each interval [j, j+1) multiply U(x) by some random number
rj. Then renormalize the obtained function to obtain P (x). If UX is spread
out over many intervals, (3) holds with high probability. We have skipped
the detailed analysis of this example because it becomes too technical.

The following model assumes that PX is chosen from a prior that is in-
variant under a group action:

Lemma 2 (symmetric prior).
G be a group acting on the domain of X and P(PX) be a probability density
on the set of distributions PX that is G-invariant, i.e.,

P(PX) = P(PX) ,

where PX denotes the average of PX over the action of G.
Then, for any fixed h we have

EP
∫
h(x)PX(x)dx = EP

∫
h(x)PX(x)dx ,

where EP denotes the expectation over the prior P.

The result follows immediately from linearity of the expectation. It
suggests to choose PX as reference measure whenever one believes that a
G-invariant prior is appropriate. The fact that then the expectations of
both sides of (3) coincide does not necessarily guarantee that

∫
h(x)PX(x)dx

and
∫
h(x)PX(x)dx are close with high probability. However, for “suf-

ficiently large” groups, this follows indeed from concentration-of-measure
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results (see [12] and [13] for a similar statement with rotations in high-
dimensional spaces). To elaborate on this for general groups would go beyond
the scope of this paper.

We have seen that the degree to which we can trust (3) heavily relies on
the particular probabilistic models for generating PX and PY |X . Therefore,
we cannot provide any confidence levels that would be valid without referring
to one of the models above. After deciding, for instance, that the example
in Lemma 1 is a good model for the generation of PY |X we still need to
estimate the size of the intervals that correspond to independent random
experiments. Then, we only believe in (3) if the interval sizes are sufficiently
small compared to the width of PX and UX . Example 2 in Section 4 shows, in
the context of deterministic relations, that violation of (3) can easily happen
for very simple PY |X and PX if PX and UX differ in large regions.

We also want to mention that Postulate 1 may fail due to “intelligent
design” of PX and PY |X . This is a fundamental limitation not only of our
approach, but also of well-known postulates for causal inference like causal
faithfulness [2].

3.3. Independence as orthogonality in information space

Our structure functions will be relative-entropy-like expressions because
these turned out to be helpful for formalizing asymmetries between cause
and effect. We introduce this terminology now. For two densities P,Q for
which P is absolutely continuous with respect to Q, the relative entropy (or
KL-distance) is defined by

D(P ||Q) :=

∫
log

P (w)

Q(w)
P (w)dw ≥ 0 .

We then define:

Definition 1 (structure functions for the conditional).
Let UX and UY be reference densities for X and Y , respectively and

−→
P Y :=

∫
P (y|x)U(x)dx

denote the output distribution obtained by feeding the conditional with the
reference input UX . Similarly, we will later use

←−
P (x) :=

∫
P (x|y)U(y)dy .
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Then we define the following “structure functions”:

h1(x) :=

∫
log

P (y|x)

U(y)
P (y|x)dy = D(PY |x ||UY )

h2(x) :=

∫
log

P (y|x)
−→
P (y)

P (y|x)dy = D(PY |x ||
−→
P Y )

h3(x) :=

∫
log

−→
P (y)

U(y)
P (y|x)dy = h1(x)− h2(x) .

The reason that we list all three of these functions though the third one can
be represented in terms of the other two is because they all yield conditions
that have an interpretation in terms of information geometry, relying on the
following concept. Three densities (P,R,Q) are said to form a pythagorean
triple of distributions if

D(P ||Q) = D(P ||R) +D(R||Q) . (5)

This terminology is motivated by interpreting relative entropy as a squared
distance and the triple thus satisfies the Pythagorean theorem. If condi-
tion (5) holds we say that the vector connecting P with R is orthogonal to
the one connecting R with Q are orthogonal but keep in mind that this re-
lation is neither symmetric with respect to exchanging the vectors with each
other, nor with respect to reversing the arrows.

We will also use the following formulation:

Lemma 3 (orthogonality in information space).
Orthogonality (5) is equivalent to∫

log
R(w)

Q(w)
P (w)dw =

∫
log

R(w)

Q(w)
R(w)dw . (6)

The proof is given by straightforward computation. In analogy to our inter-
pretation of (3), we can interpret (6) as “the integral over the log term does
not depend on whether it is weighted with P or R”. We then find:
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Theorem 1 (three orthogonality conditions).
The conditions CovUX (hi, PX/UX) = 0 for i = 1, 2, 3 are equivalent to

D(PY,X ||UXUY )
h1= D(PY,X ||UXPY |X) +D(UXPY |X ||UXUY )

D(PY,X ||UX
−→
P Y )

h2= D(PY,X ||UXPY |X) +D(UXPY |X ||UX
−→
P Y )

D(PY ||UY )
h3= D(PY ||

−→
P Y ) +D(

−→
P Y ||UY ) .

Proof: Using Lemma 3, the cases h1 and h2 are straightforward computations.
For case h3 note that∫

log

−→
P (y)

U(y)
P (y|x)P (x)dxdy =

∫
log

−→
P (y)

U(y)
P (y)dy

and ∫
log

−→
P (y)

U(y)
P (y|x)U(x)dxdy =

∫
log

−→
P (y)

U(y)

−→
P (y)dy .

�

To geometrically justify the orthogonality assumption for h1, we consider
the space V of functions of x, y and identify each distribution QX,Y with the
point

((x, y) 7→ logQ(x, y)) ∈ V .

Then we observe that the difference vector connecting the points PY,X and
UXPY |X only depends on PX (in the sense that the common term PY |X can-
cels when taking the difference between the two points), while the vector
pointing from UXPY |X to UXUY only depends on PY |X . In high-dimensional
spaces it is likely that two vectors are close to orthogonal if they are chosen
independently according to a uniform prior. Even though we do not know
of any precise statement of this form with respect to information geometric
orthogonality, we accept this as another leading intuition on top of the inter-
pretation of “uncorrelatedness” given by Theorem 1. Regarding h2, we can
argue in a similar way. The fact that both joint distributions occurring in

the points UXPY |X and UX
−→
P Y do not contain PX at all, makes it plausible

that the vector should be orthogonal to any vector that only depends on PX .
How to geometrically interpret the orthogonality given by h3 is, however, less
clear, but it will be the essential one for Section 4 since it is the only one
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that is applicable to the deterministic case. Condition (h1) will be used in
the outlook in Appendix Appendix A.

A simple example of a reasonable reference measure is the uniform distri-
bution on an interval [a, b]. It is a natural choice whenever the data points
are a priori restricted to [a, b]. For this example, the conditional relative
entropy reduces to a conditional Shannon entropy:

Example 1 (uniform reference measure).
Let the range of X and Y be restricted to the interval [0, 1] and UX and UY
be the uniform distributions on [0, 1]. Then the orthogonality condition h1 in
Theorem 1 is equivalent to∫

S(PY |x)P (x)dx =

∫ 1

0

S(PY |x)dx , (7)

and
CovUX (S(PY |x), P (x)) = 0 . (8)

Hence, (7) states that regions with high entropy S(PY |x) do not correlate
with regions of high density P (x). If PY |X and PX are chosen independently,
we assume that this independence assumption will approximately hold. For
additive noise models, this is always satisfied because (1) implies that S(Y |x)
is constant in x. We have already given an intuitive argument (see also
Fig. 2) why (7) is violated in the backward direction (in the low noise regime).

We can define a group of cyclic shifts (St)t∈[0,1] with St(x) := (x + t)
mod 1 having the uniform reference measure as unique invariant measure.
Then the covariance in (8) vanishes on the average over all shifted copies of
PX (cf. Lemma 2), although we do not have any result saying that it holds
for most shifted copies approximately.

To what extent the above orthogonality relations are approximately sat-
isfied for real-world cause-effect pairs can only be answered by extensive
empirical studies. An interesting theoretical question, however, is in which
cases the orthogonality in one direction imposes the violation of orthogonal-
ity for the converse direction. The simplest model class where this could be
confirmed is given by deterministic invertible relations [14]. A remarkable
fact is that, for the backward direction, h3 is always positively correlated
with the hypothetical input density (i.e., in fact the output). Appendix Ap-
pendix A discusses some cases where the relation between cause and effect
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is not bijective and only deterministic in one direction. There, we are also
able to show violations of orthogonality in backward direction, but some-
times additional independence conditions between PX and PY |X other than
the orthogonality postulates turn out to be necessary.

4. Deterministic invertible relation

The bijective case where Y = f(X) and X = f−1(Y ) seems particularly
challenging for causal inference. First, the absence of noise makes additive-
noise model based inference impossible [9], and second, methods that use
non-invertibility of the functional relation fail [15]. Surprisingly, the “hope-
less” noiseless invertible case is one where the theory turns out to be most
elegant because violation of one of our orthogonality conditions in backward
direction follows easily from the orthogonality in forward direction. More-
over, our simulations suggest that the corresponding inference method is
robust with respect to adding some noise; and also the empirical results on
noisy real-world data with known ground truth were rather positive. This sec-
tion largely follows our conference paper [14] but puts the ideas in a broader
context and contains more systematic experimental verifications.

4.1. Motivation

We start with a motivating example. For two real-valued variables X
and Y , let Y = f(X) with an invertible differentiable function f . Let PX be
chosen independently of f . Then regions of high density PY correlate with
regions where f has small slope (see Fig. 4). The following Lemma make this
phenomenon more explicit:

Lemma 4 (correlations between slope and density).
Let Y = f(X), where f is a differentiable bijection of [0, 1] with differentiable
inverse f−1. If log f ′ and PX are uncorrelated in the sense that∫

log f ′(x)P (x)dx =

∫
log f ′(x)dx , (9)

then log(f−1)′ and PY are positively correlated, i.e.,∫
log(f−1)′(x)P (y)dy >

∫
log f ′(y)dy ,

unless f is the identity.
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P(y)

Figure 4: If the structure of the density of PX is not correlated with the slope of f , then
flat regions of f induce peaks of PY . The causal hypothesis Y → X is thus implausible
because the causal mechanism f−1 appears to be adjusted to the “input” distribution PY .

Note that the terminology “uncorrelated” is justified if we interpret f ′ and
pX as random variables on the probability space [0, 1] with uniform measure
(see the interpretation of (3) as uncorrelatedness). The lemma actually fol-
lows from more general results shown later, but the proof is so elementary
that it is helpful to see:∫ 1

0

log(f−1)′(y)P (y)dy −
∫ 1

0

log(f−1)′(y)dy

= −
∫ 1

0

log f ′(x)P (x)dx+

∫ 1

0

log f ′(x)f ′(x)dx

= −
∫ 1

0

log f ′(x)dx+

∫ 1

0

log f ′(x)f ′(x)dx =

∫ 1

0

(f ′(x)− 1) log f ′(x)dx ≥ 0 .

The first equality uses standard substitution and exploits the fact that

log(f−1)′(f(x)) = − log f ′(x) . (10)

The second equality uses assumption (9), and the last inequality follows
because the integral is non-negative everywhere. Since it can only vanish if
Z is constant almost everywhere, the entire statement of Lemma 4 follows.
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Figure 5: Left: violation of (9) due to a too global deviation of PX from the uniform
measure. Right: PX oscillating around the constant density ensures uncorrelatedness.

Peaks of PY thus correlate with regions of large slope of f−1 (and thus
small slope of f) if X is the cause. One can show that this observation
can easily be generalized to the case where f is a bijection between sets of
higher dimension. Assuming that PX is uncorrelated with the logarithm of
the Jacobian determinant log |∇f | implies that PY is positively correlated
with log |∇f−1|.

Before embedding the above insights into our information geometric frame-
work we will show an example where the whole idea fails:

Example 2 (failure of uncorrelatedness).
Let f be piecewise linear with f ′(x) = a for all x < x0 and f ′(x) = b for all
x ≥ x0. Then∫ 1

0

log f ′(x)P (x)dx−
∫ 1

0

log f ′(x)dx = (log a− log b) (PX([0, x0])− x0) .

Therefore, uncorrelatedness can fail spectacularly whenever |PX([0, x0])−x0|
is large, meaning that PX and the uniform measure differ on a larger scale as
in figure 5, left. If PX only oscillates locally around 1, it still holds (figure 5
right).

The fact that the logarithm of the slope turned out to be particularly
convenient due to (10), is intimately related to our information geometric

framework: We first observe that
−→
P Y and

←−
P X have straightforward gener-

alizations to the deterministic case as the images of UX and UY under f and
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g := f−1, respectively. If UX and UY are the uniform distributions on [0, 1],
they are given by

−→
P (y) := g(y) and

←−
P (x) := f ′(x) . (11)

We thus obtain that (9) is equivalent to∫ 1

0

log g′(y)P (y)dy =

∫ 1

0

log g′(y)g′(y)dy ,

which can be transformed to∫ 1

0

log

−→
P (y)

U(y)
P (y)dy =

∫ 1

0

log

−→
P (y)

U(y)

−→
P (y)dy

which is equivalent to orthogonality condition (h3).
One can easily think of mechanisms in nature that violate the model of

choosing the function f and the input distribution PX independently because
PX is the result of intelligent design or a long adaption process, like evolu-
tion in biological systems. If the reward of a system can be optimized by
controlling the value of y, PX may over time shifted towards regions with
large slope of f and thus (PX , f) may spectacularly violate (9). Such effects
imply a fundamental limitation of our method.

4.2. Identifiability results

Here we rephrase the theory developed in [14] and further elaborate on
the asymmetries between cause and effect. Orthogonality (h3) in Theorem 1
is the only one that is applicable to the deterministic case since it only refers
to the image of the uniform input density under the conditional PY |X , which
also exists in the deterministic case, while the others refer to the conditional
density P (y|x) (which does not exist since it would correspond to a delta-
“function”). Condition (h3) can be rephrased in different ways:

Theorem 2 (equivalent formulations of orthogonality (h3)).
For bijective relations, the following conditions are equivalent:

(I) Orthogonality (h3) in Theorem 1:

D(PY ||UY ) = D(PY ||
−→
P Y ) +D(

−→
P Y ||UY ) . (12)
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(II) Uncorrelatedness between input and transformed density:

CovUX

(
log

←−
P X

UX
,
PX
UX

)
= 0 . (13)

(III) Transformed orthogonality:

D(PX ||
←−
P X) = D(PX ||UX) +D(UX ||

←−
P X) . (14)

(IV) Additivity of irregularities:

D(PY ||UY ) = D(PX ||UX) +D(
−→
P Y ||UY ) . (15)

(V) Additivity of approximation error:

D(PX ||
←−
P X) = D(PY ||

−→
P Y ) +D(

−→
P Y ||UY ) (16)

Proof: Condition (13) is equivalent to∫
log

←−
P (x)

U(x)
P (x)dx =

∫
log

←−
P (x)

U(x)
U(x)dx ,

using (4). Due to Lemma 3, this is equivalent to (14). The equivalence
between (12) and (14) is immediate by applying f−1 to all distributions in
(12) because the relative entropy is conserved under bijections. Equivalence
between (15) and (12) is obtained by applying f−1 only to the first term on
the right hand side of (12). By applying f−1 to the term on the left and f
to the first term on the right hand side, (15) is transformed into (16). �

Later in this section, a generalization of Condition (15) will be our es-
sential postulate. For this reason, we should mention the idea: the dis-
tance D(PX ||UX) measures the irregularities of the input distribution and

D(
−→
P Y ||UY ) quantifies the irregularities of the function. The amount of ir-

regularities of the output is thus given by the sum of these two terms. This is
because the irregularities between input and function are independent, thus
they neither “interfere” constructively nor destructively.

Condition (16) also admits an interesting interpretation: assuming that

UX and UY are given by smoothing PX and PY , respectively, thenD(PY ||
−→
P Y )
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is the error of approximating PY by
−→
P Y , i.e., the image of the smoothed in-

put. Then (16) implies that the output is less sensitive to smoothing the
input than vice versa: imagine the case where some of the peaks of PY stem
from PX and some from f . By smoothing the peaks that are caused by f ,
we generate additional peaks on PX , while smoothing the ones of PX just
removes those in PY that are due to the peaks in the non-smoothed PX .
For all these interpretations it is essential that relative entropy is always
non-negative.

Theorem 3 (violations in backward direction).
Let f be non-trivial in the sense that the image of UX under f does not
coincide with UY . If one condition (and thus all) in Theorem 2 holds, then
the corresponding conditions that exchange the role of X and Y are violated
with definite sign:

D(PX ||
←−
P X) +D(

←−
P X ||UX) > D(PX ||UX) (17)

CovUY

(
log

−→
P Y

UY
,
PY
UY

)
> 0 (18)

D(PY ||UY ) +D(UY ||
−→
P Y ) > D(PY ||

−→
P Y ) (19)

D(PY ||UY ) +D(
←−
P X ||UX) > D(PX ||UX) (20)

D(PX ||
←−
P X) +D(

←−
P X ||UX) > D(PY ||

−→
P Y ) . (21)

Proof: reordering (14) yields

D(PX ||UX) = D(PX ||
←−
P X)−D(UX ||

←−
P X) < D(PX ||

←−
P X) +D(

←−
P X ||UX) ,

showing ineq. (17). Ineqs. (19)–(21) then follow by applying f−1 to some of
the terms, but (20) and (21) follow also directly from (15) and (16), respec-
tively. (18) follows because the left hand side is the difference between the
right hand and the left hand side of (19). The fact that (12) implies (17)
can also be seen in Fig. 6. Moreover, the fact that f−1 conserves the shape
of the triangle shows that the discrepancy between the two sides of (17) is
given by the “symmetrized relative entropy”

D(
←−
P X ||UX) +D(UX ||

←−
P X) . (22)

�

19



PY

PYP

.

PX

PX

UX

.

f­1

UY

Figure 6: The orthogonality condition (I) is inconsistent with the analog orthogonality for
the backward direction: since f−1 preserves all distances, a rectangular angle in informa-

tion space at
→
P Y implies a rectangular angle at UX rather than at

←
PX , as it would be

required.
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Generalization to reference manifolds

The choice of the reference measure is the most delicate part of our
method because the structure of a distribution PX is represented by the
vector connecting PX and UX .

The uniform distribution on a certain interval may only be a reasonable
choice if the range of the respective variable is a priori restricted to this
interval. If a real-valued variable has unbounded range and finite variance,
the Gaussian with the same mean and variance as PX is a more natural
candidate for UX (and likewise for Y ). However, UX then depends on PX via
its mean and variance. A better way of expressing the above is then given
by introducing families of reference distributions rather than having a single
reference distribution. We then measure irregularities by the distance of PX
to the exponential family of Gaussians and represent the structure of PX by
the vector that connects PX to its closest point in the manifold. The family
of Gaussians is only one example of a reasonable choice. Even though it will
turn out to be a useful one in many cases, the theory below is phrased in
terms of general exponential manifolds:

Definition 2 (exponential manifolds).
Let Ω ⊆ Rd and assume a finite dimensional vector space V of functions
f : Ω→ R is given. Then, V defines an exponential manifold E by the set of
probability densities that can be written as2

P (ω) ∝ ev(ω) ∀ω ∈ Ω .

For any density P , D(P || E) denotes the infimum of D(P ||Q) with Q ∈ E.
If there is a Q with D(P || E) = D(P ||Q), it is called projection of P onto
E.

Note that the projection is unique whenever it exists [16]. Given appro-
priate reference manifolds for X and Y (formalizing the set of “smoothest”
distributions), our inference method will be based on the following assump-
tion:

2It is common to use slightly more general definitions [16] where the exponent also
contains a fixed additional function that is not in V . Our formulation ensures that E
contains the constant density whenever Ω has finite measure.
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Postulate 2 (orthogonality for reference manifolds).
Let EX and EY be “reasonable” reference manifolds for X and Y , respectively.
If X causes Y then the conditions of Theorem 2 hold approximately, where
UX and UY be the projections of PX and PY onto EX and EY , respectively.

For reference manifolds (instead of single reference distributions), this pos-
tulate requires a slightly different justification. This is explained in Ap-
pendix Appendix B.

The choice of the reference manifold is the point where prior knowledge
on the respective domain enters into the method in the same way as the
choice of the single reference measure did in the theory developed previously.
Choosing the family of all Gaussians has the following interesting feature:
the distance to the closest Gaussian defines a scale- and location-invariant
measure of irregularities of PX . Choosing a manifold smaller than the set
of all Gaussians would keep some of the information about location or scale,
choosing a larger manifold would also remove some of the scale- and location-
invariant information about PX . This is why the Gaussians are a natural
choice at least in the one-dimensional case. For multi-dimensional variables
X and Y , we will later see that the manifold of all Gaussians is often too
large because it also removes the information about relative scaling of the
different components of each variable X and Y . In this case, we will choose
a proper submanifold.

4.3. Inference method (general form)

Having derived a long list of asymmetries between cause and effect, we
have to chose one that is convenient for inferring the causal direction. To this
end, we observe that the additivity of irregularities in (15) obviously implies

D(PX ||UX) ≤ D(PY ||UY ) ,

whenever X causes Y . Generalizing this to reference manifolds (see Postu-
late 2) implies

D(PX || EX) ≤ D(PY || EY ) , (23)

with equality if and only if D(
−→
P Y ||UY ) = 0 (i.e., when the function is so

simple that the image of UX is UY ). Therefore, our inference method reads:

Information Geometric Causal Inference (IGCI):
Let EX and EY be manifolds of “smooth” reference distributions for X and Y ,
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respectively. Consider the distances of PX and PY to EX and EY , respectively,
as the complexity of the distributions. Define the complexity loss from PX
to PY by

CX→Y := D(PX || EX)−D(PY || EY ) (24)

Likewise, the loss from PY to PX is given by exchanging the roles of X and
Y .
Then, infer that X causes Y if CX→Y < 0, or that Y causes X if CX→Y > 0.

To make this rule applicable, we first derive more explicit forms of CX→Y ,
which still refer to general reference manifolds. Subsection 4.4 then describes
estimators from empirical data that refer to particular reference manifolds.

Lemma 5 (CX→Y as difference of Shannon entropies).
Let PX and PY be densities on Rd. Assume that UX and UY are the projec-
tions of PX on EX and PY on EY , respectively. Then

CX→Y = (S(UX)− S(UY ))− (S(PX)− S(PY )) (25)

= (S(UX)− S(PX))− (S(UY )− S(PY )) . (26)

Proof: since UX is the projection of PX onto EX , we have

D(PX || EX) = D(PX ||UX) = −S(PX)−
∫
P (x) logU(x)dx

= −S(PX) + S(UX) . (27)

To derive the last equation, we first assume that PX and all densities in EX
have compact support Λ ⊂ Rd. Then E contains the uniform distribution
U

(0)
X since the vector space defining E clearly contains the constant function

x 7→ 0. Because UX is the projection of PX onto EX , (PX , UX , U
(0)
X ) form a

pythagorean triple [17]. Using Lemma 3, we obtain −
∫
P (x) logU(x)dx =

S(UX). For non-compact supports, we consider the restrictions of all densities
to an increasing sequence of compact subsets Λn. The statement then follows
by the limit n→∞. �

The entropy difference between X and Y can also be rewritten as follows:
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Lemma 6 (CX→Y as mean of log Jacobi determinant).
If f is a diffeomorphism between submanifolds of Rd, then

CX→Y = S(UX)− S(UY ) +

∫
log | det∇f(x)|P (x)dx ,

where we have used the notations of Lemma 5.

Proof: The entropy of Y = f(X) reads

S(PY ) = S(PX) +

∫
PX(x) log |det∇f(x)| dx ,

thus we have

CX→Y =
(
S(UX)− S(PX)

)
−
(
S(UY )− S(PY )

)
= S(UX)− S(UY ) +

∫
log |det∇f(x)|P (x)dx . (28)

�

Note that CX→Y is invariant under joint rescaling of PX and UX (and
likewise for PY and UY ), since S(UX) changes by the same additive constant
as det∇f , except for the sign. In the next subsection, we discuss some
important cases of domains of X and Y and describe possible choices of
reference manifolds and how to empirically estimate ĈX→Y .

4.4. Inference method (explicit form for reference measures on R)

Lemma 5 and 6 reduce the estimation of CX→Y and CY→X to estimating
entropies or Jacobians, respectively. In this paper we are mainly concerned
with one-dimensional continuous variables. We therefore give the explicit
form of the estimators for this case, which will be used in our experiments.
For completeness, we also discuss other situations in Subsection 4.5 and
propose corresponding reference measures.

Uniform reference measure on intervals

For our motivating example of Subsection 4.1, where X and Y attain val-
ues in [0, 1], Lemma 5 and Lemma 6 imply the following two simple versions
of IGCI:
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1. Entropy-based IGCI: infer X → Y whenever S(PX) > S(PY ).
To implement this in practice, we used the entropy estimator [18]:

Ŝ(PX) := ψ(m)− ψ(1) +
1

m− 1

m−1∑
i=1

log |xi+1 − xi| , (29)

where the x-values should be ordered ascendingly, i.e., xi ≤ xi+1, and
ψ is the digamma function.3 Note that here we set log 0 = 0, i.e., the
points with xi+1 = xi don’t contribute to the sum. The estimate for
CX→Y based on (29) is then given by:

ĈX→Y := Ŝ(PY )− Ŝ(PX) = −ĈY→X . (30)

2. Slope-based IGCI: infer X → Y whenever∫ 1

0

log |f ′(x)|P (x)dx <

∫ 1

0

log |g′(y)|P (y)dx .

We introduce the following estimator:

ĈX→Y :=
1

m− 1

m−1∑
i=1

log

∣∣∣∣ yi+1 − yi
xi+1 − xi

∣∣∣∣ , (31)

where the xi values are ordered, and a similar one for ĈY→X .

With the assumptions of this section, (30) and (31) coincide exactly,
because the ψ-terms cancel when taking the difference between the estimated
entropies of X and Y and because ordering the x-values is equivalent to
ordering the y-values. In the noisy case, the relation between both methods
is not yet understood (see also Section 4.6). (31) then diverges for m → ∞
since the difference of y-values remains finite when the difference of x-values
gets closer to zero. Then one has to compensate for this by considering the
difference of this estimator and its analog in the reverse direction (obtained
by swapping the roles of X and Y ).

3The digamma function is the logarithmic derivative of the gamma function: ψ(x) =
d/dx log Γ(x). It behaves as log x asymptotically for x→∞.
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Gaussian reference measure on R
Let us discuss the case d = 1 first. Lemma 5 and 6 imply that CX→Y and

CY→X remain formally the same as for the uniform reference measure after
we rescale X and Y such that they have the same variance (note that this
ensures S(UX) = S(UY )). In contrast, the uniform measure required all data
points to lie in [0, 1]. The different scaling changes CX→Y by log σX − log σY ,
where σ2

X and σ2
Y denote the variances of X and Y , respectively, according

to the scaling used for uniform measure. Consequently, the methods may
infer different directions when σ2

X and σ2
Y differ significantly, although this

did not happen that often in our real world data experiments.

4.5. Inference rule for other variable ranges and reference manifolds

Although our experiments contained only real-valued variables, we sketch
how to use IGCI also for variables with other ranges.

Gaussian reference measure on Rd

Suppose now that both X and Y are d-dimensional real random vectors,
and that f is a diffeomorphism Rd → Rd. Let both EX and EY be the
manifolds of d-dimensional Gaussian distributions. The projection UX is the
d-variate Gaussian with the same mean vector and covariance matrix as X,
denoted by ΣX . UY is derived similarly. The difference of the entropies of
UX and UY thus reads 1

2
log(det ΣX/ det ΣY ). Then we can easily compute

CX→Y based on (26). Because the entropy difference S(UX) − S(PX) is a
measure of non-Gaussianity, the method thus considers the variable that is
closer to a Gaussian as the cause.

Isotropic Gaussians as reference on Rd

We will now show that the deterministic case of the method described in
[12] and [13] relies on an assumption that implies Postulate 2 for a particular
choice of the reference manifold. Let PX and PY be multivariate Gaussians
in Rd with zero mean and X and Y be related by

Y = AX , (32)

where A is an invertible d× d-matrix.4 For an arbitrary d× d matrix B let
τ(B) = tr(B)/d denote the renormalized trace. Then [12] is based on the

4Ref. [12] also considers the case Y = AX +E, where E is an independent noise term,
but we restrict the attention to the deterministic one.
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assumption that X → Y implies approximately

τ(ΣY ) = τ(ΣX) τ(AAT ) , (33)

where ΣX and ΣY denote the covariance matrices of X and Y , respectively.
In [12] this is further justified by showing that for any given A, choosing ΣX

randomly from a rotation invariant prior ensures that (33) is approximately
true with high probability5. We now show that this implies Postulate 2 if
both EX and EY are the manifold of isotropic Gaussians, i.e., those whose
covariance matrices are multiples of the identity. UX and UY have the same
mean as X and Y and their covariance matrices read τ(ΣX)I and τ(ΣY )I.
The relative entropy distance between two Gaussians with equal mean and
covariance matrices Σ1 and Σ0 is given by

D(PΣ1 ||PΣ0) =
1

2

(
log

det Σ0

det Σ1

+ d
[
τ(Σ−1

0 Σ1)− 1
])

.

The distances to the manifold of isotropic Gaussians thus read [12]

D(PX || EX) =
1

2

(
d log τ(ΣX)− log det(ΣX)

)
(34)

D(PY || EY ) =
1

2

(
d log τ(ΣY )− log det(ΣY )

)
(35)

The covariance matrix of
−→
P Y reads τ(ΣX)AAT . Hence,

D(
−→
P Y ||UY ) =

1

2

(
log

τ(ΣY )d

τ(ΣX)d det(AAT )
+ d

[
τ(ΣX) τ(AAT )

τ(ΣY )
− 1

])
.

Due to det(ΣY ) = det(ΣX) det(AAT ) we have

D(PY || EY ) = D(PX || EX) +D(
−→
P Y ||UY ) +

d

2

[
1− τ(ΣX) τ(AAT )

τ(ΣY )

]
.

Assumption (33) is thus equivalent to condition (V) in Theorem 2. Postu-
late 2 thus gets an additional justification via a probabilistic scenario where
f is fixed and PX is chosen randomly from a prior that satisfies a certain
symmetry condition.

5Ref. [13] extends this framwork to the case where the number of dimensions exceeds
the number of samples.
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For high-dimensional relations that are close to linear, the method above
seems more appropriate than the one that uses the set of all Gaussians (as
opposed to the isotropic ones only) as reference manifold. Allowing for all
Gaussians, the method makes use of the non-linearities of f , while it removes
the information that is contained in ΣX . For relations that are close to the
linear case, one thus looses the essential information, while taking isotropic
Gaussians as reference ensures that only the information that describes the
joint (overall) scaling is lost.

Non-uniform reference measure on finite sets

The intuitive explanation of the identifiability of cause and effect used
the fact that regions of high density of the effect correlate with regions of
high slope of the inverse function. Remarkably, our method is in principle
also applicable to bijections between finite probability spaces, provided that

we ensure that D(
−→
P Y || EY ) > 0 (which is not the case if EX and EY consist

of the uniform distribution only). We omit the details but only give a brief
sketch of a special case here.

Assume that both X and Y take values in {1, . . . , k} and PX and PY
are probability mass functions with PY (y) = PX

(
g(y)

)
. (Note that in this

discrete case, g is invertible but not monotonic.) Let EX and EY be the
two-parametric manifold of distributions of “discrete Gaussians” with

U(x |µ, σ) ∝ e−
(x−µ)2

2σ2 ,

where µ ∈ R and σ ∈ R+. Then the image of the discrete Gaussians will
usually not be a discrete Gaussian and our inference principle becomes non-
trivial, yielding preference for one direction. The essential question is, how-
ever, under which conditions Postulate 2 is still reasonable. The following
explanations provide an idea about this. Assume that k is large and that PX
is a distribution that is close to one of the above discrete Gaussian except
for a small number of x-values. Let f be a bijection that preserves most of
the points {1, . . . , k}, while permuting only some of them. It is then likely
that this permutation increases the distance to the reference manifold rather
than decreasing it. This way of reasoning certainly relies on the assumption
that k is large and that the distance of PX to the reference manifold is not
too large. For small k, one can easily construct examples with PX deviating
so strongly from the Gaussians that a significant fraction of permutations
decrease the distance to the reference manifold.
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4.6. Performance in the noisy regime

The assumption of having a bijective deterministic relation is actually
necessary for the IGCI method. Section 4.7, however, will show that the
performance on our real data sets was unexpectedly good, even though most
of them are obviously noisy. We therefore present some explanations for this
fact. Although the noisy case is actually out of scope, the development of
future methods could be inspired by understanding the unexpectedly reason-
able performance in this regime.

On the one hand, we estimate how small the noise needs to be in order
not to spoil the method (Subsubsection 4.6.1). On the other hand we show,
that under some conditions noise can even contribute to inferring the correct
causal direction (Subsubsection 4.6.2).

First we discuss a case where IGCI necessarily fails. Let Y be generated
from X by a linear model with additive noise

Y = X + E with E ⊥⊥ X ,

hence PY is obtained by the convolution PY = PX ∗ PE. For Gaussians as
reference manifolds, the projections UX and UY of PX and PY on EX and EY ,
respectively, are given by the Gaussians with the same mean and variance.
If E is Gaussian, we thus have UY = UX ∗PE due to the additivity of means
and variances under convolution. We have

D(PX || EX) = D(PX ||UX) > D(PX∗PE ||UX∗PE) = D(PY ||UY ) = D(PY || EY ) ,

because the convolution with a Gaussian decreases the distance to the set
of Gaussians (that it is non-increasing already follows from monotonicity of
relative entropy distance under stochastic maps [19]). Hence, (23) is violated
and, after renormalizing X and Y to unit variance, the entropy of Y will be
greater than the entropy of X. The entropy-based estimator for CX→Y will
thus converge to a positive number, while our theory makes no statement on
the slope-based estimator (note that the equivalence of both required deter-
ministic models). Similar arguments hold for Y = αX+E, we have restricted
the derivation above to α = 1 only for technical convenience. Hence, entropy
based IGCI with Gaussians as reference manifold fails if the non-linearity of
f is small compared to the width of the (Gaussian) noise. The following sub-
section provides a bound on how relevant small noise can get for the decision
made by IGCI.
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4.6.1. Robustness of entropy based inference under adding small noise

We restrict the attention again to real-valued X and Y and recall that
the entropy generated by adding independent Gaussian noise is related to
the Fisher information

J(Y ) := EP
(
∂ logP (y)

∂y

)2

by De Bruijn’s identity [19]:

∂

∂t
S(PY+

√
tZ) =

1

2
J(Y +

√
tZ) , (36)

where Z is a Gaussian with variance 1 and Y ⊥⊥ Z. The following Lemma
provides a lower bound on the non-Gaussianity of the perturbed variable:

Lemma 7 (non-Gaussianity of noisy output).
If EY denotes the manifold of Gaussians and E is Gaussian noise with E ⊥⊥ Y
then the “decrease of non-Gaussianity” is bounded from above by

D(PY || EY )−D(PY+E || EY ) ≤ 1

2
log

(
1 + [J(Y )σ2

Y − 1]
σ2
E

σ2
Y + σ2

E

)
,

where σ2
Y and σ2

E denote the variance of the unperturbed output and the noise,
respectively.

Proof: Set E := σEZ for standard Gaussian Z, then (36) implies

S(PY+E)− S(PY ) =

∫ σ2
E

0

∂

∂t
S(PY+

√
tZ)dt

=
1

2

∫ σ2
E

0

J(Y +
√
tZ)dt ≤ 1

2

∫ σ2
E

0

J(Y )J(
√
tZ)

J(Y ) + J(
√
tZ)

dt ,

where the last inequality is due to the Fisher information inequality [20]

1

J(Y +W )
≥ 1

J(Y )
+

1

J(W )
,
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for arbitrary independent random variables Y and W . Using J(
√
tZ) = 1/t

(which can be checked via straightforward computation), we obtain

S(PY+E)− S(PY ) ≤ 1

2

∫ σ2
E

0

1

t+ 1/J(Y )
dt

=
1

2

[
log

(
σ2
E +

1

J(Y )

)
− log

(
1

J(Y )

)]
=

1

2
log
(
J(Y )σ2

E + 1
)
.

Recalling from (27) that non-Gaussianity is given by

D(PY || EY ) =
1

2
log(2πeσ2

Y )− S(PY ) ,

because the first term is the entropy of the Gaussian with variance σ2
Y , the

non-Gaussianity changes according to

D(PY || EY )−D(PY+E || EY ) ≤ 1

2

(
log

σ2
Y

σ2
Y + σ2

E

+ log
(
J(Y )σ2

E + 1
))

=
1

2
log

(
1 + [J(Y )σ2

Y − 1]
σ2
E

σ2
Y + σ2

E

)
.

�

Note that Gaussians minimize Fisher information for a given variance
and thus J(Y )σ2

Y − 1 ≥ 0, with equality for Gaussians. If Y is Gaussian,
convolution with a Gaussian cannot decrease non-Gaussianity any further
because it is already zero. For non-Gaussian Y , the amount of decrease not
only depends on the “sensitivity term” [J(Y )σ2

Y − 1] but also on the ratio
between the variance of the noise and the total variance σ2

Y +σ2
E of the noisy

output.
Lemma 7 assumes Gaussian noise. We expect however that non-Gaussian

noise will typically decrease non-Gaussianity even less than Gaussian noise
does, except for rare cases of very particularly distributed noise. We there-
fore propose to use the bound for general noise. To decide whether noise
may have reversed the inferred causal arrow, we could proceed as follows.
For every hypothetical cause, say, X, we can estimate the density and the
function f and thus compute the distribution of the effect Y without noise.
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After computing its Fisher information we can estimate the decrease of non-
Gaussianity caused by the noise and check whether it is smaller than the
difference between D(PY ′ || EY ) and D(PX || EX), where Y ′ := Y +E denotes
the noisy effect.

4.6.2. Performance of slope-based inference in the noisy regime

We will now take a closer look at the estimator (31) in the noisy case.
The arguments below are partly heuristic, but simulation studies in Sub-
section 4.7 support our claims. Assume that the i.i.d sample (xi, yi) with
i = 1, . . . ,m is generated by an additive noise model (1) with strictly mono-
tonic differentiable f . We assume that the xi and hence also the fi := f(xi)
are already ordered (xi+1 ≥ xi and fi+1 ≥ fi). We have for large m

1

m− 1

m−1∑
i=1

log
∣∣∣ yi+1 − yi
xi+1 − xi

∣∣∣ =
1

m− 1

m−1∑
i=1

log
∣∣∣(fi+1 − fi) + (ei+1 − ei)

xi+1 − xi

∣∣∣
≈ 1

m− 1

m−1∑
i=1

log |ei+1 − ei| −
1

m− 1

m−1∑
i=1

log |xi+1 − xi| . (37)

The approximation is based on the observation that the difference |fi+1− fi|
gets negligible compared to |ei+1 − ei| for m → ∞ since the latter term
remains finite while the other one converges to zero.

The second term in (37) is actually the entropy estimator (30) up to the
term ψ(m) − ψ(1). Without the noise E, the two estimators (30) and (31)
coincide with each other, as we have already argued. However, in the noisy
regime, the first term tends to dominate as m increases, since it diverges as
m→∞.

Now we write X as X = f̃(Y ) + Ẽ with an arbitrary function f̃ . To
focus on the noise effect, let us assume that X and Y have the same entropy
such that the information contained in the nonlinear functions does not help
identifying the causal direction, i.e., the estimator (30) would give the same
value for ĈX→Y and ĈY→X . To investigate the behavior of the estimator
(31), denote by AX→Y the first term of (37), i.e.,

AX→Y :=
1

m− 1

m−1∑
i=1

log |ei+1 − ei| ,

and let

AY→X :=
1

m− 1

m−1∑
i=1

log |ẽi+1 − ẽi| .
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As the second term of (37) is the same for both directions by assumption,
(31) would prefer the direction X → Y (resp. Y → X) if AX→Y is smaller
(resp. larger) than AY→X .

The Jacobian matrix associated with the transformation from (X,E)T to
(X, Y )T is

J =

[
1 0

f ′(X) 1

]
,

and hence |J| = 1, where |J| denotes the absolute value of the determinant
of J. We then have PX,Y = PX,E/|J| = PX,E. As X and E are independent
we further have

S(X, Y ) = S(X) + S(E). (38)

On the other hand, we have

S(X, Y ) = S(Y, Ẽ). (39)

Except for some special cases (for instance, where f is linear and both X and
E are Gaussian) Ẽ and Y are dependent [9, 10], i.e., S(Y )+S(Ẽ)−S(Y, Ẽ) >
0. Due to (38) and (39), we thus have S(X) + S(E) < S(Y ) + S(Ẽ). As we
assumed S(X) = S(Y ), finally we have S(E) < S(Ẽ). Furthermore, as E
and Ẽ approximately have the same variance,6 the above inequality implies
that Ẽ is more Gaussian than E.

Let D̃i := Ẽi+1−Ẽi and Di := Ei+1−Ei. Under the condition that Ei are
i.i.d., PDi is the convolution of PE and P−E. Likewise, PD̃i is a convolution

of PẼ with P−Ẽ. Since Ẽ is more Gaussian than E, it is quite likely that D̃i

is also more Gaussian than Di. We then consider the following three possible
cases.

1. If E is Gaussian (and so are Di), D̃i is also Gaussian (given the above
heuristics), and AX→Y = AY→X . Hence, the noise does not change the
decision.

2. Consider the case where E is super-Gaussian, which, roughly speaking,
means that PE has a sharper peak and longer tails than the Gaussian
variables with the same mean and variance. The Laplacian distribution
is an example of such distributions. Since Ẽ is more Gaussian than E,

6Note that E and Ẽ have exactly the same variance, if both directions are fitted with
linear functions (i.e., both f and f̃ are linear) and X and Y have the same variance.
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E is more super-Gaussian than Ẽ. Consequently, Di take relatively
more values that are very close to zero than D̃i. The function log |Di|
is concave on (0,∞) and symmetric w.r.t. the y-axis; we obtain large
negative values for Di that are close to zero. AX→Y thus gets smaller
than AY→X . That is, super-Gaussian noise tends to favor the correct
direction, X → Y .

3. Suppose E is sub-Gaussian, which is flatter than the Gaussian variable
with the same mean and variance. An example is the uniform distri-
bution. As D̃i is more Gaussian (or less sub-Gaussian) than Di, they
take more often values that are very close to zero or very large than
Di. Hence AY→X is larger than AX→Y . In other words, sub-Gaussian
noise tends to favor the wrong direction, Y → X.

Fortunately, super-Gaussian noise occurs quite often in practice. Although
we only analyze the noise effect above, one should bear in mind that with the
estimator (31), the decision is made based on the joint effect of the properties
of the nonlinear function and the noise distribution, which correspond to the
second and first terms of (37), respectively.7

In the analysis above we assume that the data-generating process in the
noisy case can be approximated by the additive noise model. Analyzing the
noise effect in more general settings (e.g., in the PNL causal model [10]) is
rather complicated, and is not given here. However, in Subsection 4.7 we also
give simulation results on the data with a rather complex data generating
process and illustrate how the noise influences the performance of IGCI.

4.7. Experiments

In this section we describe some experiments that illustrate the the-
ory above and show that our method can detect the true causal direction
in many real-world data sets. Complete source code for the experiments
is provided online at http://webdav.tuebingen.mpg.de/causality/ and
http://parallel.vub.ac.be/igci. The latter provides an applet showing
the data and the results of IGCI.

7Rigorously speaking, the noise in the forward direction also changes the best-fitting
nonlinear function in the backward direction, which would influence the estimate of CY→X

as well. As a simple illustration, consider the case where both X and E are uniform. Then
the best-fitting function f̃ in the direction Y → X is no longer linear, and its shape depends
on the noise level. However, we skip the details of this aspect.
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Simulation studies (I): cause-effect pairs from a larger causal network

We investigate the performance of IGCI in the deterministic and the noisy
regime.

To this end, we simulate a causal relation between n variables X1, . . . , Xn,
from which we take different pairs (Y,X) ≡ (Xi, Xj), where Xj is one of the
parents of Xi. All causal dependences will be given by structural equations.
This ensures that in our pairs not only the effects but also the causes are
the outcomes of structural equations – reflecting the fact that causes in the
real-world are effects of other variables.

The precise form of the data generating process is as follows. We first gen-
erate 20 independent variables X1, . . . , X20. Their distribution is randomly
chosen from two options with equal probability: either the uniform distri-
bution on [0, 1] or a Gaussian mixture distribution GM with the following
density:

GM(x) =

g∑
i=1

wiφ(x|µi, σi) ,

where g ∈ [1, 5], means µi ∈ [0, 1], standard deviations σi ∈ [0, 1/g] and
weights wi ∈ [0, 1] with

∑g
i=1wi = 1. Each parameter is randomly chosen

from the interval according to a uniform distribution. Then, 50 variables
X21, . . . , X70 are defined according to the following structural equation:

Xi = fi(Xj, . . . , Xj+k) + λiRiEi ,

with j, k defined later, where for each i:

• The function fi is randomly selected from the following families:

LIN Linear functions of the form

f(xj, . . . , xj+k) =
k∑
j=0

cjxj+i ,

where cj ∈ [−1, 1] and k is a natural number randomly according
to the probability 1/2k.

POL Polynomials of the form

f(x) =
n∑
i=1

icix
i ,
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with n ∈ [1, 5] and ci ∈ [−1, 1]. The purpose of the factor i is to
ensure that the magnitude of each term is similar for x ∈ [0, 1].

MON Monomials of the form f(x) = xn with n ∈ [2, 5].

ROOT Root functions f(x) = x1/n with n ∈ [2, 5].

MG Cumulative distribution functions of mixtures of Gaussians:

f(x) =
5∑
i=1

αiΦ(x|µi, σi),

which is a convex combination of Gaussian cdf’s Φ(x|µi, σi) with
αi, µi ∈ [0, 1], σi ∈ [0, 0.2].

PROD Product functions of the form f(xj, xj+1) = xjxj+1.

QUOT Quotients f(xj, xj+1) = xj/xj+1.

• The variables Xj, . . . , Xj+k are chosen randomly from X1, . . . , Xi−1 (the
“causally preceding” variables). Note that k ≥ 0 for the linear function
and k=1 for the product and division function. The latter results in
non-additive noise, since the study of the relation between one input
variable and the output variable is based on marginalizing the data
over the second input variable. All other functions have only one inde-
pendent variable.

• λi has the probability of 0.5 to be zero, and is otherwise chosen uni-
formly between [0, 0.2].

• Ri is the difference of the maximum and the minimum of the function
fi after feeding it with the values of Xj, . . . , Xj+k. In this way, the
noise is proportional to the range of the function values.

• The noise term Ei is drawn from a Gaussian distribution with mean 0
and variance 1.

Note that a deterministic relation is obtained whenever k = 0 (i.e., Xj is the
only parent of Xi) and the noise parameter λ vanishes. When a deterministic
relation is monotonic and decreasing, we make it an increasing function by
replacing each y-value with 1 − y. We repeat the whole procedure of gen-
erating the variables X1, . . . , X70 100 times, and each time we generate 200
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samples such that each causal decision will be based on m = 200 i.i.d. data
points.

For each data set generated by this procedure, we apply our inference
method to the 50 pairs (Y,X) ≡ (Xi, Xj) for i = 21, . . . , 70 (with randomly
chosen j as above). We compared the entropy-based and the slope-based
method. We also compare two different families of reference measures: the
uniform family (which amounts to preprocessing both components of the data
by an affine transformation such that the minimum is 0 and the maximum
is 1) and the Gaussian family (where each component of the data is prepro-
cessed by an affine transformation such that it has zero mean and standard
deviation 1).

Fig. 7 shows some typical examples of input distributions, relations be-
tween input and output, and the corresponding output distribution. Table 1
lists the values ĈX→Y and ĈY→X of the slope-based estimator (31) and the
entropy estimator (30), as well as the corresponding decision. Remarkably,
the decision was also correct for the linear noisy case (the fourth case). A
possible explanation could be the one given in Subsection 4.6.2.

By only taking decisions for |ĈX→Y − ĈY→X | ≥ δ for some threshold δ,
one can trade off accuracy (percentage of correct decisions) versus decision
rate (percentage of cases in which a decision was taken). Fig. 8 shows the
accuracy versus the decision rate for the deterministic relations, and Fig. 9
shows the same for the probabilistic relations. These results show that the
method works best for deterministic relations, as expected. For determinis-
tic relations, increasing the threshold increases the accuracy of the method,
coming close to an accuracy of 100% for large threshold values. For deter-
ministic relations, the Gaussian reference measure performs somewhat better
than the uniform reference measure. For probabilistic relations, however, the
picture is rather different. The uniform reference has an increasing accuracy
starting at 70% when no threshold is used and reaching 85% for large thresh-
olds. The Gaussian reference on the other hand fails for small thresholds;
the accuracy is close to 50% which is the same as random guessing. Only for
large thresholds (decision rates smaller than 20%) the accuracy reaches 70%.
For both, deterministic and probabilistic relations, the slope-based estimator
(31) and the entropy-based one (30) yield similar results.

It is also instructive to check to what extent the above procedure gener-
ates joint distributions PY,X that satisfy our orthogonality assumptions. We
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Figure 7: Typical synthetic cause-effect pairs illustrating various different cases: prob-
abilistic versus deterministic relations, correct versus incorrect result and an indecision.
The corresponding quantitative description is given in Table 1.
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(31) (30)

Function type ĈX→Y ĈY→X Dec. OK Ŝ(PX) Ŝ(PY ) Dec. OK

X46 = f(X12) POL -0.29 0.29 + + -2.53 -2.83 + +
X48 = f(X40) POL 0.73 -0.73 + - -3.81 -3.01 + -
X25 = f(X20) MG 0.03 -0.03 - - -2.84 -2.8 - -
X22 = f(X1) LIN 5.60 6.44 + + -2.64 -2.93 + +
X50 = f(X13) MG 5.33 4.71 + - -3.14 -2.92 + -

Table 1: Quantitative description (only for the uniform reference measures) of the typical
examples depicted in Figure 7.

Figure 8: Results of four different implementations of IGCI on simulated deterministic
causal relations for about 2000 different (X,Y ) pairs.
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Figure 9: Results of four different implementations of IGCI on simulated probabilistic
causal relations for about 3000 different (X,Y ) pairs.
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therefore compare

CovUX (log f ′, PX) to CovUY (log f−1′ , PY ) ,

because the covariance in condition (II) in Theorem 2 and the corresponding
expression for the backward direction take this form after we use (11) for the
uniform reference measure. The first expression is given by the estimator

Ĉov(PX , log f ′) :=
1

m− 1

m−1∑
i=1

(
1− xi+1 − xi−1

2

)
log

∣∣∣∣ yi+1 − yi
xi+1 − xi

∣∣∣∣ , (40)

and the second by exchanging the roles of X and Y . By the simulation
explained above 1575 examples of deterministic strictly monotonic relations
were generated. The x-axis of Fig. 10 shows the values (40) and the y-axis
the analog one for the backward direction.

The figure confirms our postulate in the sense that the covariance in
forward direction is usually closer to zero. Most of the values for the forward
direction are in the interval [−1, 1], while many of the backward values even
reach values up to 5. It clearly shows that the backward covariance is biased
away from zero and that the spread is higher.

4.7.1. Simulation studies (II): performance for different shapes of the noise

We investigate how the performance of slope-based inference (estimator
(31)) with uniform reference measure is changed by the shape of the noise.
We generate the data according to Y = f(X) +E. We use four distributions
for PE, which are the Gaussian, Laplacian (which is super-Gaussian), uniform
(which is sub-Gaussian) distributions and a strongly sub-Gaussian distribu-
tion (represented by the mixture of Gaussians 0.5N (−2, 1) + 0.5N (2, 1)).
Similarly, four distributions are used for PX ; they are the Gaussian and
uniform distributions, a super-Gaussian distribution obtained by passing
a Gaussian variable through the power-nonlinearity with exponent 1.5 and
keeping the original sign, and a sub-Gaussian one represented by the mix-
ture of Gaussians 0.5N (−0.5, 1) + 0.5N (0.5, 1). f has three different forms:
f(X) = X1/3, f(X) = X3, and f(X) = X. Note that in the last case, f is
not informative for causal inference at all in the noise-free case.

For each setting, we repeat the simulations 500 times. Figs. 11, 12, and 13
plot the performance as a function of the noise standard deviation in all
possible cases of PE and PX , with the three forms for f , respectively. One
can see that in the second columns of all these figures (corresponding to
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Figure 10: Empirical violations of orthogonality condition (h3) in forward vs. backward
direction (see text).
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Figure 11: The performance (percentage of correct inferences) at different noise levels
under various choices for PE and PX with the function f(X) = X1/3. Columns from
left to right correspond to Gaussian, Laplacian, uniform, and strongly sub-Gaussian (with
P (E) = 0.5N (−2, 1)+0.5N (2, 1)) noise, respectively. Rows from top to bottom correspond
to the Gaussian, uniform, super-Gaussian, and sub-Gaussian distributions for the cause
X, respectively.

Laplacian noise) the performance increases along with the noise variance. In
the third and fourth columns (corresponding to the uniform and strongly sub-
Gaussian noise), the performance tends to become worse as the noise variance
increases. As seen from Fig. 12, the function f(X) = X3 is informative
for causal inference: the performance is always good, almost regardless of
different choices for PE and PX . When both PE and PX are Gaussian with
f(X) = X1/3 or f(X) = X (top-left panels in Figs. 11 and 13), the decision
is for high noise level like a random guess. Finally, when f is linear and
thus not useful for causal inference in the deterministic setting (see Fig. 13),
in certain combinations of PE and PX , IGCI still infers correctly due to the
noise effect.

We then consider a fixed signal-to-noise ratio and change the shape of the
noise continuously. To this end, we randomly generate i.i.d. samples for the
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Figure 12: The performance (percentage of correct inferences) at different noise levels with
the function f(X) = X3; see the caption of Fig. 11.
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Figure 13: The performance (percentage of correct inferences) at different noise levels with
the function f(X) = X; see the caption of Fig. 11.
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Figure 14: The performance (percentage of correct inferences) with different noise distri-
butions (as indicated by v in (41)) for various PX and f . The ratio of the noise standard
deviation w.r.t. that of f(X) is fixed to 2.

noise term E according to the zero-mean generalized exponential distribution
(GED)

P (e) =
v√

8Γ(1/v)
exp

{
−
∣∣∣ e√

2σ

∣∣∣v}, (41)

where v is the mode, Γ(.) the gamma function, and σ the standard deviation.
Sub-Gaussian, Gaussian and super-Gaussian noise are obtained for v > 2,
v = 2, and v < 2, respectively. In particular, when v = 1, we get the
Laplacian distribution. The uniform distribution is obtained via the limit
v → ∞. We use the ratio-of-uniform method [21] to generate the random
numbers.

For various cases of PX and f we vary v from 1 to 5 in (41), while the
ratio of the standard deviation of the noise w.r.t. that of f(X) is fixed to 2.
Fig. 14 depicts the performance as a function of v. In all cases of PX and
f under consideration, the performance decreases or remains the same as v
increases (i.e., as PE becomes less super-Gaussian or more sub-Gaussian),
which is consistent with the claims in Subsubsection 4.6.2.
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Figure 15: The performance of IGCI on the data generated by rather complex transfor-
mations with different noise distributions (as indicated by v in (41)) for various PlogX and
transformations. Note that the y-axis labels correspond to the distribution of logX. The
variance of the noise E is fixed to 0.45.

As a more general setting, we repeat the above simulations with the data
generated by Y = X · eE + tanh(E), Y = X · eE + E3

5
, and Y = X · eE + E,

respectively; here Y is generated by a multiplicative block together with a
nonlinear or linear effect of the noise E. The performance of IGCI as a
function of v is given in Fig. 15. Again, as in Fig. 14, one can see that the
performance decreases or remains the same as v increases.

Real-world data: Cause-effect pairs

We have also evaluated the IGCI method on real-world data, namely on
the extended version of the “Cause-effect pairs” dataset described in [1]. This
dataset consists of observations of 70 different pairs of variables from various
domains, and the task for each pair is to find which variable is the cause
and which variable the effect. For example, one of the pairs consists of 349
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measurements of altitude and temperature taken at different weather stations
in Germany. Obviously, the altitude is the cause and the temperature is the
effect. The complete dataset and a more detailed description of each pair
can be found at http://webdav.tuebingen.mpg.de/cause-effect. Note
that most of the pairs in this data set have high noise levels, so that we do
not necessarily expect our method to work well.

In Fig. 16 we show the results for the 70 pairs with the following four
variants of IGCI: uniform distribution and Gaussians as reference measures,
each case combined with the slope-based and the entropy-based estimator.
The absolute value |ĈX→Y | was used as a heuristic confidence criterion. By
taking only those decisions with high absolute value, one can trade off ac-
curacy versus the amount of decisions taken. Fig. 16 shows the accuracy
(i.e., the fraction of correct decisions) as a function of the decision rate (i.e.,
the fraction of decisions taken out of a total of 70 possible decisions, one for
each cause-effect pair). If the absolute value of ĈX→Y was indeed a good
measure of the confidence, one would expect that the accuracy is lowest for
decision rate 100% (i.e., if all decisions are taken, regardless of the estimated
confidence) and increases (more or less) monotonically as the decision rate
decreases. A complication here is that the amount of data sets (cause-effect
pairs) from which the accuracy can be estimated decreases proportionally to
the decision rate. This means that the accuracies reported for low decision
rates have higher uncertainty than the accuracies reported for high decision
rates. For each decision rate, we have therefore indicated the 95% confidence
interval that the accuracy is not significantly different from 50% by a grey
area.

The four variants of IGCI yield comparable results. We also conclude that
the majority of the decisions does agree with the causal ground truth, and
that this agreement is statistically significant for high decision rates. How-
ever, the accuracy does not clearly increase with decreasing decision rates.
This indicates that the heuristic confidence estimate (the absolute value of
the estimated ĈX→Y ) is not functioning properly, although it is difficult to
draw any final conclusions about this because of the high uncertainty in the
accuracy for low decision rates. Nevertheless, considering the amount of noise
that is present in many cause-effect pairs, it is surprising that our method
works so well: if one always takes a decision, the four IGCI variants have
accuracies of 70± 7%, 75± 7%, 69± 7%, and 70± 7%, respectively.

Fig. 17 provides comparative results of IGCI (now using only the vari-
ant based on (31) with a uniform reference measure) with four other causal
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Figure 16: Results of four different implementations of IGCI on 70 cause-effect pairs.

inference methods that are suitable for inferring the causal direction be-
tween pairs of variables: LINGAM [22], Additive Noise (AN) [9], the Post-
NonLinear (PNL) model [10], and a recent non-parametric method (GPI)
[23]. All methods, except for GPI, employ the HSIC independence test [24]
for accepting or rejecting the fitted models and use the maximum of the two
HSIC p-values (where each p-value corresponds to a possible causal direction)
as confidence estimate. The LINGAM method fits functional relationships of
the form Y = αX + E to the data, preferring the causal direction for which
the noise E is more independent of the hypothetical cause X. The additive
noise based method (recall remarks around (1) and [9]) was implemented
using the Gaussian Process regression code in the GPML toolbox [25] to
find the most likely function f . For post-nonlinear model based inference
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Figure 17: Results of various causal inference methods on 70 cause-effect pairs.

(2), we employed neural networks to model the functions f and h.8 Finally,
the non-parametric GPI method does not assume a particular class of func-
tional relationships, but uses the general model Y = f(X,E) and exploits
the smoothness of the function f as one of the criteria for deciding upon the
causal direction. For this method, the confidence value is taken to be the
approximated Bayes factor between the two models corresponding with the
two possible causal directions.

In contrast with the experiments reported in Fig. 16, we used at most
500 data points from each cause-effect pair, because most methods need sig-

8The large discrepancy between the results for PNL reported here and those reported
in [14] is due to the fact that in [14], we applied a hand-tuned preprocessing method to
each pair, whereas here we have treated all pairs equally by using the same preprocessing
method for each pair.
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nificantly more computation time than IGCI for large sample sizes. Note,
however, that the performance of IGCI in this case is comparable with the
performance reported in Fig. 16 where we used all data points. This can
be explained because for many pairs, the measured values have been dis-
cretized, and therefore, the effective number of data points used by IGCI is
usually lower than the number of available data points. We have repeated the
experiments three times with different subsamples and plotted the average
curves in Fig. 17. We observe that for high decision rates, all methods except
LINGAM draw causal conclusions that are significantly correlated with the
ground truth. IGCI, PNL and GPI yield comparable performances overall.
The performance of the additive noise method seems to deviate from these
three methods, because its accuracy is somewhat lower if it is forced to al-
ways make a decision, but on the other hand, its confidence estimate appears
to be more accurate than that of the other methods, because the accuracy in-
creases more quickly (even up to 100%) as the decision rate decreases. Again,
it is difficult to draw any definite conclusions about the relative performances
of these methods based on only 70 cause-effect pairs.

Real world data: water-levels of the Rhine

The data consists of the water levels of the Rhine9 measured at 22 different
cities in Germany in 15 minute intervals from 1990 to 2008. It is natural to
expect that there is a causal relationship between the water levels at the
different locations, where “upstream” levels influence “downstream” levels.

We tested our method on all 231 pairs of cities. Since the measurements
are actually time series, and the causal influence needs some time to propa-
gate, we performed the experiments with shifted time series, where for each
pair of time series, one series was shifted relatively to the other so as to
maximize the correlation between both.

Fig. 18 shows for each pair whether the decision is correct or not. It also
shows some representative plots of the data. One clearly sees that the noise
for two nearby cities is relatively low, but it can be quite large for two distant
cities. Nevertheless, our method performed quite well in both situations: the
overall accuracy, using the uniform reference measure, is 87% (201 correct
decisions). The results for the Gaussian reference measure are similar (202

9We are grateful to the German office “Wasser- und Schiffahrtsverwaltung des Bundes”,
which provides the data upon request.
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correct decisions).

4.8. Discussion

The assumption that Peffect|cause and Pcause do not satisfy any “non-generic
relation” can be a helpful paradigm for finding novel causal inference rules.
Hence, one of the main important challenges consists in describing what kind
of “non-generic” dependences typically occur in backward direction. A gen-
eral answer to this question could not be given here, but we have shown that
one option for defining dependences in an empirically testable way is given
by orthogonality conditions in the sense of information geometry.

We have presented a method that is able to infer deterministic causal
relations between variables with various domains. The accuracy of the pro-
posed method was shown to be competitive with existing methods. In terms
of computation time, this method is orders of magnitude faster (in partic-
ular, it is linear in the number of data points). In addition, it can handle
the deterministic case, whereas existing methods only work in the presence
of noise.

It would be desirable to have a reliable confidence criterion for our in-
ference method. Moreover, we would like to point out again that in the
large noise regime, the present method may completely fail. For a Gaussian
reference measure in one dimension, for instance, our entropy-based version
necessarily shows the wrong direction when the effect is given by a linear
function of the cause plus an independent Gaussian noise. This is because
then the effect is more Gaussian than the cause.

A generalization of the information geometric inference method to the
case where the relation between cause and effect is not close to a bijective
map is not straightforward. In Appendix Appendix A we discuss some toy
examples showing that asymmetries between cause and effect can sometimes
still be phrased in terms of information geometry.
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Appendix A. Outlook: Special cases of non-bijective relations

The following subsections provide a list of toy models, and explore un-
der which conditions a violation of some of the orthogonality conditions can
be shown for the backward direction. The models suggest that there is no
straightforward extension of our IGCI method to the non-bijective case, al-
though orthogonality could also help in identifying the causal direction.

Appendix A.1. One way deterministic

Let the rangesDX andDY ofX and Y , respectively, be finite and P (X, Y )
be a distribution for which Y is deterministically determined by X, i.e., Y =
f(X) for some surjective, but not necessarily injective function f (without
surjectivity the backward model would not be defined), as in Fig. A.19. We
show that the orthogonality conditions of Theorem 2 get simple for this case
if UX and UY are the uniform distributions on DX and DY , respectively.
First consider the orthogonalities that we expect if X causes Y :
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Lemma 8 (orthogonalities for surjective functions, X → Y ).
Assume that Y is deterministically given by X. CovUX (hi, PX/UX) = 0 holds
trivially for i = 1. For i = 2, 3 it is equivalent to

CovUX (logm ◦ f, PX/UX) = 0 ,

where
m(y) := |f−1(y)| (A.1)

denotes the number of pre-images of y.

Proof: Condition (h1) is trivial since the function x 7→ D(PY |x ||UY ) is con-
stant (because P (y|x) = δy,f(x) and PY |x thus is a point measure). To rephrase
condition (h2), we first compute

−→
P (y) =

m(y)

|DX |
,

and thus obtain

h2(x) =
∑
y

log
P (y|x)
−→
P (y)

P (y|x)

=
∑
y

log
δy,f(x)

m(y)
δy,f(x) + c

= − logm(f(x)) + c

with c := log |DX |. The constant term c is clearly irrelevant for the co-
variance. Since (h1) is a constant function, uncorrelatedness between h3 =
h1 − h2 and PX/UX is obviously equivalent to uncorrelatedness between h2

and PX/UX . �

The following Lemma describes the relations that we expect for the same
condition Y = f(X) if Y causes X, as in the “splitting model” in Fig. A.19
(right) 10. The causal relation is now given by a mechanism that splits every
y-value into different x-values in the set Ay such that the mapping from x to
y is deterministic.

10Note that this is the only case in this paper where Y is the cause. The reason is that
we want to compare the properties of PX,Y that we expect for the two possible causal
directions.
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Lemma 9 (orthogonalities for splitting model, Y → X).
Assume again that Y is deterministically given by X (although we now as-
sume Y to be the cause). For the functions y 7→ hi(y) the equation CovUY (hi, PY /UY ) =
0 is trivial for i = 2 and for i = 1, 3 equivalent to

CovUY (S(PX|y),
P (y)

U(y)
) = 0 .

By slightly abusing notation, S(PX|y) and P (y)/U(y) denote the functions
y 7→ S(PX|y) and y 7→ P (y)/U(y), respectively.

Proof: We first compute

P (x|y) = δy,f(x)
PX(x)

PY (f(x))
.

To rephrase condition (h2), we compute

←−
P (x) =

1

|DY |
∑
y

P (x|y) =
PX(x)

|DY |PY (f(x))
.

We thus obtain

h2(y) =
∑
x

log
P (x|y)
←−
P (x)

P (x|y) = log |DY | .

Therefore, condition (h2) becomes trivial.
To reformulate condition (h1), we observe that h1(y) = D(PX|y ||UX) is,

up to a sign and and additive constant, given by S(PX|y). Since h2 is a
constant, condition (h3) is equivalent to (h1). �

These results show that we obtain reasonable conditions for both direc-
tions: if X is the cause, we get uncorrelatedness between input and the
logarithm of the number of pre-images. On the other hand, if Y is the cause,
we postulate zero correlation between input and conditional entropy. Unfor-
tunately, the orthogonality in one direction does not imply the violation of
orthogonality for the other direction. Moreover, the violation of orthogonal-
ity in backward direction can have both positive and negative sign. This is
shown by the following example.
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Example 3 (no definite violation in backward direction).
Let f be such that the number m of pre-images (see (A.1)) is constant. Then
all non-trivial conditions of Lemma 8 are satisfied for the hypothesis X → Y
but y 7→ S(PX|y) can be positively or negatively correlated or uncorrelated
with PY /UY . To see this, set DY = {1, 2} and DX = {1, 2, 3, 4} and P (x|y =
1) = 1/2 for each x = 1, 2. On the other hand, P (x|y = 2) = 1 for x = 3.
Then S(PX|y=1) = log 2 and S(PX|y=2) = 0. Depending on whether P (y =
1) is greater or smaller than P (y = 2) we can induce positive or negative
correlations.

Conversely, assume that S(PX|y) is uncorrelated with P (y)/U(y) and all
our orthogonality conditions would therefore be consistent with the hypothesis
Y → X. To see that then logm(f(x)) can nevertheless be negatively or
positively correlated with P (x)/U(x), we consider the following example. Set
DX = {1, 2, 3, 4, 5} and DY = {1, 2}. Let PX|y=1 be the uniform distribution
on the set {1, 2} and let PX|y=2 be some distribution on {3, 4, 5} that has also
the entropy 1 bit. Then S(PX|y) is constant in y and thus uncorrelated with
P (y)/U(y) and we can design P (y) as we like. To check whether logm(f(x))
is positively or negatively correlated with P (x)/U(x) we observe∑
x

logm(f(x))(P (x)− U(x)) = log 2

(
PY (1)− 2

5

)
+ log 3

(
PY (2)− 3

5

)
= (log 2− log 3)

(
PY (1)− 2

5

)
,

which is positive for PY (1) < 2/5 and negative for PY (1) > 2/5.

This result is a bit disappointing at first glance since it questions the
information geometric method for the non-bijective case: if violations of
orthogonality for the backward direction occur with both possible signs, de-
cision rules get less simple; preferring the direction for which the violation of
orthogonality is smaller with respect to its absolute value seems less natural
than inference rules that work without absolute value. It could therefore
be that notions of independence other than our orthogonality conditions are
needed. To support this conjecture, we should also mention that in designing
PY and PX|Y in the above example we have in fact adjusted them to each
other, we only did it in a way that is not captured by our orthogonality
conditions.

There is, however, the following nice result:
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Lemma 10 (number of pre-images and input probability).
For Y = f(X), let m(y) be the number of pre-images of y. If logm is
uncorrelated with PY /UY then logm ◦ f is negatively correlated with PX/UX .
On the other hand, if logm ◦ f is uncorrelated with PX/UX , then logm is
positively correlated with PY /UY :

CovUX

(
logm ◦ f, PX

UX

)
= CovUY

(
logm,

PY
UY

)
− D

(
UY ||

m

|DX |

)
−D

(
m

|DX |
||UY

)
.(A.2)

Proof:

CovUX

(
logm ◦ f, PX

UX

)
=

∑
x

logm(f(x))(P (x)− U(x)) (A.3)

=
∑
y

logm(y)

(
P (y)− m(y)

|DX |

)
=

∑
y

logm(y)

(
P (y)− U(y) + U(y)− m(y)

|DX |

)
= CovUY

(
logm,

PY
UY

)
(A.4)

− D

(
UY ||

m

|DX |

)
−D

(
m

|DX |
||UY

)
. (A.5)

�

The term (A.2) measures to what extentm is non-constant. Sincem(y)/|DX |
coincides with

−→
P (y) this is again our well-known expression (22). Note that

the correlations between m and PY /UY is positive if Y is the effect, while the
correlation between m ◦ f and PX/UX is negative if X is the effect. Here,
the different sign of the correlation may seem disturbing. However, in the
following special case it turns out to be natural:

Example 4 (all pre-images are equally likely).
For both causal directions X → Y and Y → X assume

P (x|y) =
δy,f(x)

m(y)
. (A.6)
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If Y → X this is not unlikely to occur, because it only means to divide the
probability uniformly over all pre-images x of a given y. For X → Y it can,
for instance, occur if PX is uniform.11

We obtain

h3(x) =
∑
y

log

−→
P (y)

U(y)
P (y|x) = log

m(f(x)) |DY |
|DX |

,

and

h3(y) =
∑
x

log

←−
P (x)

U(x)
P (x|y) = log

|DX |
m(y) |DY |

.

Therefore, hs(x) and h3(y) are, up to irrelevant constants, given by m(f(x))
and −m(y), respectively. Hence, Lemma 10 implies that h3(y) is negatively
correlated with P (y)/U(y) if h3(x) is uncorrelated with P (x)/U(x) and vice
versa, which nicely fits into our information geometric framework.

Note, moreover, that logm(y) coincides with S(PX|y) up to a constant
(and hence also with D(PX|y‖UX) up to a sign and a constant). Therefore,
uncorrelatedness between logm and PY /UY is equivalent to orthogonality con-
dition (h1) in Theorem 1.

Appendix A.2. Functional relation with small independent noise

In this subsection we revisit the motivating remarks in Section 2 in a
more precise way and describe how they fit into our information geometric
framework. Consider a so-called additive noise model

Y = f(X) + E with E ⊥⊥ X .

Let f be a bijection of [0, 1] and E have compact support [0, ε]. Let PX
have support [0, 1], the support of Y is thus given by [0, 1 + ε]. By adapting
the arguments of Example 1 to the uniform distribution on [0, 1 + ε] instead
of [0, 1] one checks easily that orthogonality condition (h1) is equivalent to
uncorelatedness between S(PY |x) and P (x), which holds because S(PY |x)
attains the constant value S(E). We now assume that ε is so small compared
to the curvature of f and the scale of the fluctuations of P (x) that the

11If P (x) attains many different values, it is, however, unlikely that it always attains
the same value within the same Ay.
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conditional distribution PX|y is approximately given by the distribution of
f−1′(y)E, shifted by some y-dependent value. We thus assume

S(PX|y) ≈ S(E) + log f−1′(y) , (A.7)

for all y that are not too close to the boundaries of the interval [0, 1]. For
the backward direction condition, the covariance (h1) therefore reads

CovUY

(
S(PX|y),

P (y)

U(y)

)
=

∫ 1+ε

0

S(PX|y)(P (y)− U(y))dy (A.8)

≈
∫ 1

0

log f−1′(y)(P (y)− U(y))dy (A.9)

where we have not only used the approximation (A.7) but also neglected the
fact that S(X|y) actually has to be integrated over [0, 1+ ε] rather than [0, 1]
since the errors are all of order ε. Expression (A.9) is positive for small ε
because in the deterministic limit ε→ 0, (A.9) can be transformed into

−
∫ 1

0

log f ′(x)(P (x)− f ′(x))dx = D(PX || f ′) +D(f ′ ||PX) ≥ 0 , (A.10)

where we interpret f ′ as probability density (due to f(1) = 1 and f(0) = 0).

Note that in the deterministic invertible case we have f ′(x) =
←−
P (x) and

(A.10) is again a symmetrized relative entropy term. This result shows that
additive noise models (in the low noise regime) induce backward models for
which the noise depends on the input in a way that leads to violation of
orthogonality condition (h1). It is remarkable that the amount of violation
is here described by a term that is similar to the one that occurred in the
bijective as well as in the case of Appendix Appendix A.1 even though
these cases refer to orthogonality (h3). This suggests that there is a common
principle behind our observations.

Appendix B. Justification of Postulate 2

For single reference densities instead of manifolds we have justified condi-
tions (h1) to (h3) by the argument that the structure functions h should not
correlate with PX because they only depend on the conditional PY |X (i.e.,
the function f in our case). This justification is not completely convincing if
we generalize the setting to manifolds: the functions h1 and h3 contain the
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reference density UY , which is defined by projecting the “output” probability
PY onto EY . UY thus depends on both PX and f because PY is the image of
PX under f . We therefore justify Postulate 2 in a slightly different way.

Our justification remains quite informal; to provide a more precise version
of the below arguments would go beyond the scope of this paper. We start
with the following statement:

Observation 1 (projection of random moves).
Let P be the set of probability distributions over some large (or infinite)
probability space. Let E ⊂ P be a low-dimensional exponential manifold and
P ∈ P be arbitrary. Generate a new point R by moving into some random
direction from P , chosen independently of E. Denoting the projections of P
and R on E by PE and RE , respectively, we obtain for a typical move

PE ≈ RE .

The approximate equality means that the error made by replacing one point
with the other in any relative entropy expression is small compared to D(P ||R)
and D(R ||P ).

Apart from the approximate equality signs, the statement is also infor-
mal by not specifying what a “typical move” means. This would require a
probability distribution on the set of possible moves.

Assume now that the pair (PX , f) is generated as follows. Let UX ∈
EX be given and obtain PX by modifying UX according to some random
move. Generate f independently of EX and EY . We can assume that UX
is the projection of PX onto EX without seriously restricting the random
moves because this assumption approximates the typical case. This is seen
by applying Observation 1 to the special case P ∈ E . Let UY , as usual, be

the projection of PY onto EY and W be the projection of
−→
P Y onto EY . We

now apply Observation 1 and consider PY as obtained from
−→
P Y by a random

move. This is justified because it is just the map of the move from UX to
PX under f . Since f and this move have been chosen independently of the
manifold EY , Observation 1 states

W ≈ UY . (B.1)

Applying f−1 to both sides yields

Wf ≈
←−
P X , (B.2)
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where Wf denotes the image of W under f−1. Note that Wf is the point in
f−1(EY ) that is the closest to UX because W is the point in EY that is the
closest to the image of UX under f . In the typical case we expect

D(PX ||Wf ) ≈ D(PX ||UX) +D(UX ||Wf ) ,

because the vector connecting UX with Wf does not depend on PX , it only
depends on f and the manifolds. The vector pointing from UX to PX is
therefore typically close to orthogonal to the one pointing from UX to Wf .
Together with (B.2) we thus obtain

D(PX ||
←−
P X) ≈ D(PX ||UX) +D(UX ||

←−
P X) ,

which is one of the equivalent conditions in Theorem 2.
In Subsection 4.4 we have already mentioned that in the special case

of linear relations (32) between high-dimensional Gaussian variables (with
isotropic Gaussians as reference manifold), Postulate 2 can be further justi-
fied by concentration of measure results. It is instructive to verify that also
(B.1) holds for this case. To see this, we recall that UY has the covariance
matrix

τ(ΣY ) I = τ(AΣXA
T ) I ,

which is approximately equal to

τ(ΣX) τ(AAT ) I ,

(see Subsection 4.4 and [12]). One checks easily that the latter is the covari-

ance matrix of W , i.e., the isotropic Gaussian that is closest to
−→
P Y . Using

the notations above, this shows (B.1).
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