
Validity estimates for loopy Belief Propagation
on binary real-world networks

Joris Mooij
Dept. of Biophysics, Inst. for Neuroscience, Radboud Univ. Nijmegen

6525 EZ Nijmegen, the Netherlands
j.mooij@science.ru.nl

Hilbert J. Kappen
Dept. of Biophysics, Inst. for Neuroscience, Radboud Univ. Nijmegen

6525 EZ Nijmegen, the Netherlands
b.kappen@science.ru.nl

Abstract

We introduce a computationally efficient method to estimate the valid-
ity of the BP method as a function of graph topology, the connectiv-
ity strength, frustration and network size. We present numerical results
that demonstrate the correctness of our estimates for the uniform random
model and for a real-world network (“C. Elegans”). Although the method
is restricted to pair-wise interactions, no local evidence (zero “biases”)
and binary variables, we believe that its predictions correctly capture the
limitations of BP for inference and MAP estimation on arbitrary graphi-
cal models. Using this approach, we find that BP always performs better
than MF. Especially for large networks with broad degree distributions
(such as scale-free networks) BP turns out to significantly outperform
MF.

1 Introduction

Loopy Belief Propagation (BP) [1] and its generalizations (such as the Cluster Variation
Method [2]) are powerful methods for inference and optimization. As is well-known, BP is
exact on trees, but also yields surprisingly good results for many other graphs that arise in
real-world applications [3, 4]. On the other hand, for densely connected graphs with high
interaction strengths the results can be quite bad or BP can simply fail to converge. Despite
the fact that BP is often used in applications nowadays, a good theoretical understanding of
its convergence properties and the quality of the approximation is still lacking (except for
the very special case of graphs with a single loop [5]).

In this article we attempt to answer the question in what way the quality of the BP re-
sults depends on the topology of the underlying graph (looking at structural properties such
as short cycles and large “hubs”) and on the interaction potentials (i.e. strength and frus-
tration). We do this for the special but interesting case of binary networks with symmetric
pairwise potentials (i.e. Boltzmann machines) without local evidence. This has the practical



advantage that analytical calculations are feasible and furthermore we believe that adding
local evidence will only serve to extend the domain of convergence, implying this to be the
worst-case scenario. We compare the results with those of the variational mean-field (MF)
method.

Real-world graphs are often far from uniformly random and possess structure such as clus-
tering and power-law degree distributions [6]. Since we expect these structural features to
arise in many applications of BP, we focus in this article on graphs modeling this kind of
features. In particular, we consider Erdős-Ŕenyi uniform random graphs [7], Barábasi-
Albert “scale-free” graphs [8], and the neural network of a widely studied worm, the
Caenorhabditis elegans.

This paper is organized as follows. In the next section we describe the class of graphical
models under investigation and explain our method to efficiently estimate the validity of
BP and MF. In section 3 we give a qualitative discussion of how the connectivity strength
and frustration generally govern the model behavior and discuss the relevant regimes of the
model parameters. We show for uniform random graphs that our validity estimates are in
very good agreement with the real behavior of the BP algorithm. In section 4 we study the
influence of graph topology. Thanks to the numerical efficiency of our estimation method
we are able to study very large (N ∼ 10000) networks, for which it would not be feasible
to simply run BP and look what happens. We also try our method on the neural network of
the worm C. Elegans and find almost perfect agreement of our predictions with observed
BP behavior. We conclude that BP is always better than MF and that the difference is
particularly striking for the case of large networks with broad degree distributions such as
scale-free graphs.

2 Model, paramagnetic solution and stability analysis

Let G = (V,B) be an undirected labelled graph without self-connections, defined by a
set of nodesV = {1, . . . , N} and a set of linksB ⊆ {(i, j) | 1 ≤ i < j ≤ N}. The
adjacency matrixcorresponding toG is denotedM and defined as follows:Mij := 1 if
(ij) ∈ B or (ji) ∈ B and 0 otherwise. We denote the set of neighbors of nodei ∈ V by
Ni := {j ∈ V | (ij) ∈ B} and its degree bydi := #(Ni). We define theaverage degree
d := 1

N

∑
i∈V di and themaximum degree∆ := maxi∈V di.

To each nodei we associate a binary random variablexi taking values in{−1,+1}. Let
W be a symmetricN ×N -matrix defining the strength of the links between the nodes. The
probability distribution over configurationsx = (x1, . . . , xN ) is given by

P(x) :=
1
Z

∏
(ij)∈B

eWijxixj =
1
Z

∏
i,j∈V

e
1
2 MijWijxixj (1)

with Z a normalization constant. We will take the weight matrixW to be random, with
i.i.d. entries{Wij}1≤i<j≤N distributed according to the Gaussian law with meanJ0 and
varianceJ2.

For this model, instead of using the single-node and pair-wise beliefsbi(xi) resp.
bij(xi, xj), it turns out to be more convenient to use the (equivalent) quantitiesm :=
{mi}i∈V andξ := {ξij}(ij)∈B , defined by:

mi := bi(+1)− bi(−1);
ξij := bij(+1,+1)− bij(+1,−1)− bij(−1,+1) + bij(−1,−1).

We will use these throughout this paper. We call themi magnetizations; note that the
expectation valuesE xi vanish because of the symmetry in the probability distribution (1).



As is well-known [2, 9], fixed points of BP correspond to stationary points of the Bethe
free energy, which is in this case given by

FBe(m, ξ) := −
∑

(ij)∈B

Wijξij +
N∑

i=1

(1− di)
∑

xi=±1

η

(
1 + mixi

2

)

+
∑

(ij)∈B

∑
xi,xj=±1

η

(
1 + mixi + mjxj + xixjξij

4

)
with η(x) := x log x. Note that with this parameterization all normalization and overlap
constraints (i.e.

∑
xj

bij(xi, xj) = bi(xi)) are satisfied by construction [10]. We can mini-
mize the Bethe free energy analytically by setting its derivatives to zero; one then immedi-
ately sees that a possible solution of the resulting equations is theparamagnetic1 solution:
mi = 0 andξij = tanhWij (for (ij) ∈ B). For this solution to be aminimum(instead of
a saddle point or maximum), the Hessian ofFBe at that point should be positive-definite.
This condition turns out to be equivalent to the followingBethe stability matrix

(ABe)ij := δij

(
1 +

∑
k∈Ni

ξ2
ik

1− ξ2
ik

)
−Mij

ξij

1− ξ2
ij

(with ξij = tanhWij) (2)

being positive-definite. Whether this is the case obviously depends on the values of the
weightsWij and the adjacency matrixM . Since for zero weights (W = 0), the stability
matrix is just the identity matrix, the paramagnetic solution is a minimum of the Bethe free
energy for small values of the weightsWij . The question of what “small” exactly means
in terms ofJ andJ0 and how this relates to the graph topology will be taken on in the next
two sections.

First we discuss the situation for the mean-field variational method. The mean-field free
energyFMF (m) only depends onm; we can set its derivatives to zero, which again yields
the paramagnetic solutionm = 0. The corresponding stability matrix (equal to the Hes-
sian) is given by

(AMF )ij := δij −WijMij

and should be positive-definite for the paramagnetic solution to be stable. One can prove
[11] thatABe is positive-definite wheneverAMF is positive-definite. Since the exact mag-
netizations are zero, we conclude that the Bethe approximation is better than the mean-field
approximation for all possible choices of the weightsW . As we will see later on, this dif-
ference can become quite large for large networks.

3 Weight dependence

The behavior of the graphical model depends critically on the parametersJ0 andJ . Taking
the graph topology to be uniformly random (see also subsection 4.1) we recover the model
known in the statistical physics community as the Viana-Bray model [12], which has been
thoroughly studied and is quite well-understood. In the limitN → ∞, there are different
relevant regimes (“phases”) for the parametersJ andJ0 to be distinguished (cf. Fig. 1):

• Theparamagnetic phase, where the magnetizations all vanish (m = 0), valid for
J andJ0 both small.

• The ferromagnetic phase, where two configurations (characterized by all magne-
tizations being either positive or negative) each get half of the probability mass.
This is the phase occurring for largeJ0.

1Throughout this article, we will use terminology from statistical physics if there is no good
corresponding terminology in the field of machine learning available.
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Figure 1: Empirical regime boundaries for the ER graph model withN = 100 andd = 20,
averaged over three instances; expectation values are shown as thick black lines, standard-
deviations are indicated by the gray areas. See the main text for additional explanation.
The exact location of the boundary between the spin-glass and ferromagnetic phase in the
right-hand plot (indicated by the dashed line) was not calculated. The red dash-dotted line
shows the stability boundary for MF.

• Thespin-glass phasewhere the probability mass is distributed over exponentially
(in N ) many different configurations. This phase occurs for frustrated weights,
i.e. for largeJ .

Consider now the right-hand plot in Fig. 1. Here we have plotted the different regimes con-
cerning the stability of the paramagnetic solution of the Bethe approximation.2 We find that
them = 0 solution is indeed stable forJ andJ0 small and becomes unstable at some point
whenJ0 increases. This signals the paramagnetic-ferromagnetic phase transition. The lo-
cation is in good agreement with the known phase boundary found for theN → ∞ limit
by advanced statistical physics methods as we show in more detail in [11]. For comparison
we have also plotted the stability boundary for MF (the red dash-dotted line). Clearly, the
mean-field approximation breaks down much earlier than the Bethe approximation and is
unable to capture the phase transitions occurring for large connectivity strengths.

The boundary between the spin-glass phase and the paramagnetic phase is more subtle.
What happens is that the Bethe stability matrix becomesmarginally stableat some point
when we increaseJ , i.e. the minimum eigenvalue ofABe approaches zero (in the limit
N → ∞). This means that the Bethe free energy becomes very flat at that point. If we go
on increasingJ , them = 0 solution becomes stable again (in other words, the minimum
eigenvalue of the stability matrixABe becomes positive again). We interpret the marginal
instability as signalling the onset of the spin-glass phase. Indeed it coincides with the
known phase boundary for the Viana-Bray model [11, 12]. We observe a similar marginal
instability for other graph topologies.

Now consider the left-hand plot, Fig. 1(a). It shows the convergence behavior of the BP al-
gorithm, which was determined by running BP with a fixed number of maximum iterations
and slight damping. The messages were initialized randomly. We find different regimes
that are separated by the boundaries shown in the plot. For smallJ andJ0, BP converges
to m = 0. For J0 large enough, BP converges to one of the two ferromagnetic solutions

2Although in Fig. 1 we show only one particular graph topology, the general appearance of these
plots does not differ much for other graph topologies, especially for largeN . The scale of the plots
mostly depends on the network sizeN and the average degreed as we will show in the next section.
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Figure 2: Critical values for Bethe and MF for different graph topologies (�: ER,M: BA)
in the dense limit withd = 0.1N as a function of network size. Note that they-axis is
rescaled by

√
d.

(which one is determined by the random initial conditions). For largeJ , BP does not con-
verge within 1000 iterations, indicating a complex probability distribution. The boundaries
coincide within statistical precision with those in the right-hand plot which were obtained
by the stability analysis.

The computation time necessary for producing a plot such as Fig. 1(a), showing the conver-
gence behavior of BP, quickly increases with increasingN . The computation time needed
for the stability analysis (Fig. 1(b)), which amounts to calculating the minimal eigenvalue
of theN ×N stability matrix, is much less, allowing us to investigate the behavior of BP
for large networks.

4 Graph topology

In this section we will concentrate on the frustrated case, more precisely on the caseJ0 =
0 (i.e. they-axis in the regime diagrams) and study the location of the Bethe marginal
instability and of the MF instability for various graph topologies as a function of network
sizeN and average degreed. We will denote byJBe

c the critical value ofJ at which the
Bethe paramagnetic solution becomes marginally unstable and we will refer to this as the
Bethe critical value. The critical value ofJ where the MF solution becomes unstable will
be denoted asJMF

c and referred to as theMF critical value.

In studying the influence of graph topology for large networks, we have to distinguish two
cases, which we call thedenseandsparselimits. In the dense limit, we letN → ∞ and
scale the average degree asd = cN for some fixed constantc. In this limit, we find that the
influence of the graph topology is almost negligible. For all graph topologies that we have
considered, we find the following asymptotic behavior for the critical values:

JBe
c ∝ 1√

d
, JMF

c ∝ 1
2
√

d

The constant of proportionality is approximately 1. These results are illustrated in Fig. 2
for two different graph topologies that will be discussed in more detail below.

In the sparse limit, we letN →∞ but keepd fixed. In that case the resulting critical values
show significant dependence on the graph topology as we will see.

4.1 Uniform random graphs (ER)

The first and most elementary random graph model we will consider was introduced and
studied by Erd̋os and Ŕenyi [7]. The ensemble, which we denote asER(N, p), consists of
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Figure 3: Critical values for Bethe and MF for Erdős-Ŕenyi uniform random graphs with
average degreed = 10.

the graphs withN nodes; links are added between each pair of nodes independently with
probabilityp. The resulting graphs have a degree distribution that is approximately Poisson
for largeN and the expected average degree isE d = p(N − 1). As was mentioned before,
the resulting graphical model is known in the statistical physics literature as the Viana-Bray
model (with zero “external field”).

Fig. 3 shows the results for the sparse limit, wherep is chosen such that the expected aver-
age degree is fixed tod = 10. The Bethe critical valueJBe

c appears to be independent of
network size and is slightly larger than1/

√
d. The MF critical valueJMF

c does depend on
network size (it looks to be proportional to1/

√
∆ instead of1/

√
d); in fact it can be proven

that it converges very slowly to 0 asN → ∞ [11], implying that the MF approximation
breaks down for very large ER networks in the sparse limit. Although this is an interesting
result, one could say that for all practical purposes the MF critical valueJMF

c is nearly
independent of network sizeN for uniform random graphs.

4.2 Scale-free graphs (BA)

A phenomenon often observed in real-world networks is that the degree distribution be-
haves like a power-law, i.e. the number of nodes with degreeδ is proportional toδ−α for
someα > 0. These graphs are also known as “scale-free” graphs. The first random graph
model exhibiting this behavior is from Barabási and Albert [8].

We will consider a slightly different model, which we will denote byBA(N,m). It is
defined as a stochastic process, yielding graphs with more and more nodes as time goes
on. At t = 0 one starts with the graph consisting ofm nodes and no links. At each time
step, one node is added; it is connected withm different already existing nodes, attaching
preferably to nodes with higher degree (“rich get richer”). More specifically, we take the
probability to connect to a node of degreeδ to be proportional toδ + 1. The degree dis-
tribution turns out to have a power-law dependence forN → ∞ with exponentα = 3. In
Fig. 4 we illustrate some BA graphs. The difference between the maximum degree∆ and
the average degreed is rather large: whereas the average degreed converges to2m, the
maximum degree∆ is known to scale as

√
N .

Fig. 5 shows the results of the stability analysis for BA graphs with average degreed =
10. Note that they-axis is rescaled by

√
∆ to show that the MF critical valueJMF

c is
proportional to1/

√
∆. The Bethe critical values are seen to have a scaling behavior that

lies somewhere between1/
√

d and 1/
√

∆. Compared to the situation for uniform ER
graphs, BP now even more significantly outperforms MF. The relatively low sensitivity to
the maximum degree∆ that BP exhibits here can be understood intuitively since BA graphs
resemble forests of sparsely interconnected stars of high degree, on which BP is exact.



4.3 C. Elegans

We have also applied our stability analysis on the neural network of the worm C. Elegans,
that is publicly available onhttp://elegans.swmed.edu/ . This graph hasN =
202 andd = 19.4. We have calculated the ferromagnetic (J = 0) transition and spin-glass
(J0 = 0) transition. We also calculated the critical value ofJ where BP stops converging,
and the value ofJ where BP does not find the paramagnetic solution anymore. The results
are shown in Table 1. Note the very good agreement for the Bethe critical value and the
critical J where BP stops finding them = 0 solution. These results show the accuracy of
our method of estimating BP validity on real-world networks.

Table 1: Critical values and BP boundaries for C. Elegans network.

Spin-glass Ferromagnetic
MF critical value 0.0927± 0.0023 0.0387
Bethe critical value 0.197± 0.016 0.0406
BPm = 0 boundary 0.194± 0.014 0.0400
BP convergence boundary 0.209± 0.027 > 1

5 Conclusions

We have introduced a computationally efficient method to estimate the validity of BP as a
function of graph topology, the connectivity strength, frustration and network size. Using
this approach, we have found that:

• for any graph, the Bethe approximation is valid for a larger set of connectivity
strengthsWij than the mean-field approximation;

• for uniform random graphs, the quality of both the MF approximation and the
Bethe approximation is determined by the average degree of the network (Jc ∝
1/
√

d for the spin-glass transition) and is nearly independent of network size;

• for scale-free networks the validity of the MF approximation scales very poorly
with network size due to the increase of the maximal degree (“rich get richer”). In
contrast, the validity of the BP approximation scales very well with network size.
This is in agreement with our intuition that these networks resemble a forest of
high degree stars (“hubs”) that are sparsely interconnected and the fact that BP is
exact on stars.

• In the limit in which the graph sizeN → ∞ and the average degreed scales
proportional toN , the influence of the graph-topological details on the location of
the spin-glass transition (atJ ∝ 1/

√
d) diminishes and becomes largely irrelevant.

m = 1 m = 2 m = 3

Figure 4: Baŕabasi-Albert graphs forN = 20.
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