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Abstract

An important goal common to domain adaptation and causal reasoning is to make
accurate predictions when the distributions for the target domain(s) and the source
domain(s) differ. We consider the case in which the domains correspond to different
contexts in which a system has been measured, for example, a purely observational
context and several interventional contexts in which the system has been perturbed
by external interventions. We consider a class of such causal domain adaptation
problems, where data for multiple source domains are given, and the task is to
predict the distribution of a certain target variable from measurements of other
variables in one or more target domains. We propose an approach for solving these
problems that exploits causal inference and does not rely on prior knowledge of
the causal graph, nor of the type of the interventions or the intervention targets. We
propose a practical implementation of the approach and evaluate it on simulated
and real world data.

1 Introduction

Predicting unknown values based on observed data is a problem central to many sciences, and well
studied in statistics and machine learning. This problem becomes significantly harder if the training
and test data do not have the same distribution because they come from different domains. Such a
distribution shift will happen in practice whenever the circumstances under which the training data
were gathered are different from those for which the predictions are to be made. A rich literature
exists on this problem of domain adaptation, a particular task in the field of transfer learning; see
e.g.|Quinionero-Candela et al.| (2009); Pan and Yang| (2010) for overviews.

When the domain changes, so may the relations between the different variables under consideration.
While for some (sets of) variables A, a function f : A — ) learned in one domain may continue
to offer good predictions for Y € ) in a different domain, this may not be true of other sets A" of
variables. Causal graphs (e.g.,[Pearl, 2009; Spirtes et al., 2000) allow us to reason about this in a
principled way when the domains correspond to different external interventions on the system, or
more generally, to different contexts in which a system has been measured. Knowledge of the causal
graph that describes the data generating mechanism, and of which parts of the model are invariant
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Figure 1: Example of a situation where an intervention C'; leads to a shift of distribution between
source domain and target domain (see also Example [I). Green crosses show source domain data
(C7 = 0), blue circles show target domain data (C; = 1). A standard feature selection method that
does not take into account the causal structure but would use X3 to predict Y := X5 (because X3 is
a good predictor of Y in the source domain) would obtain extremely biased predictions in the target
domain. Using X instead yields less accurate predictions in the source domain, but more accurate
ones in the target domain.

across the different domains, allows one to transfer knowledge from one domain to the other in order
to address the problem of domain adaptation (Spirtes et al., [ 2000; |Storkeyl, [ 2009; |Scholkopf et al.,
2012} [Bareinboim and Pearl, [2016)).

Over the last years, various methods have been proposed to exploit the causal structure of the data
generating process in order to address certain domain adaptation problems, each relying on different
assumptions. For example, [Bareinboim and Pearl (2016) provide theory for identifiability under
transfer (“transportability”) assuming that the causal graph is known, that interventions are perfect,
and that the intervention targets are known. [Hyttinen et al.|(2015) also assume perfect interventions
with known targets but do not rely on complete knowledge of the causal graph, instead inferring
the relevant aspects of it from the data. [Rojas-Carulla et al.| (2016) make the assumption that if the
conditional distribution of the target given some subset of covariates is invariant across different
source domains, then this conditional distribution must also be the same in the target domain. The
methods proposed in (Scholkopf et al., 2012} [Zhang et al., |2013} 2015} |Gong et al., 2016) all address
challenging settings in which conditional independences that follow from the usual Markov and
faithfulness assumptions alone do not suffice to solve the problem, but additional assumptions on the
data generating process have to be made.

In this work, we will make no such additional assumptions, and address the setting in which both the
causal graph and the intervention types and targets may be (partially) unknown. Our contributions are
the following. We consider a set of relatively weak assumptions that make the problem well-posed.
We propose an approach to solve this class of causal domain adaptation problems that can deal with
the presence of latent confounders. The main idea is to select the subset of features A that leads to
the best predictions of Y in the source domains, while satisfying invariance (i.e., P(Y | A) is the
same in the source and target domains). To test whether the invariance condition is satisfied, we
apply the recently proposed Joint Causal Inference (JCI) framework (Mooij et al., 2018) to exploit the
information provided by multiple domains corresponding to different interventions. We propose an
implementation of this method based on a causal discovery algorithm by (Hyttinen et al.,[2014)). The
basic idea is as follows. First, a standard feature selection method is applied to source domains data to
find sets of features that are predictive of a target variable, trading off bias and variance, but unaware
of changes in the distribution across domains. A causal reasoning method then draws conclusions
from all given data about the causal graph, avoiding sets of features for which the predictions would
not transfer to the target domains. We evaluate the method on synthetic data and a real-world example.

2 Theory

Before giving a precise definition of the class of domain adaptation problems that we consider in this
work, we begin with a motivating example.



Example 1. Given three variables X1, X, X3 describing different aspects of a system (for example,
certain blood cell phenotypes in mice). We have observational measurements of these three variables
(the source domain, designated with Cy = 0), and in addition, measurements of X, and X3 under
an intervention (the target domain, designated with Cy = 1), e.g., in which the mice have been
exposed to a certain drug. The domain adaptation task is to predict the values of Y := X in the
interventional target domain (i.e., when C1 = 1). Let us assume for this example that the causal
graph in Figure[l{a) applies, i.e., we assume that X5 is affected by X1 and affects X3, while Cy
(the intervention) affects both X1 and X3. Suppose further that the relation between X1 and Xo
is about equally strong as the relation between Xo and X3, but considerably more noisy. Then a
feature selection method using only available source domain data, and aiming to select the best
subset of features to use for prediction of Y will prefer both { X3} and { X1, X3} over { X1} (because
predicting Y from X1 leads to larger variance than predicting Y from X3, and to a larger bias than
predicting Y from both X and X3). However, under the intervention (Cy = 1), P(Y | X3) and
P(Y | X1, X3) both changef[ﬂ so that using those features to predict Y in the target domain could lead
10 extreme bias, as illustrated in Figure|[I|c). Because the conditional distribution of Y given X1 is
invariant across domains, i.e., P(Y | X1,C; = 0) = P(Y | X1,Cy = 1), as illustrated in Figure b),
predictions of Y based only on X can be safely transferred to the target domain.

This example provides an instance of a domain adaptation problem where feature selection methods
that do not take into account the causal structure would pick a set of features that does not generalize
to the target domain, and may lead to arbitrarily bad predictions (even asymptotically, as the number
of data points tends to infinity). On the other hand, correctly taking into account the causal structure
and the possible distribution shift from source to target domain allows to upper bound the prediction
error in the target domain, as we will see in Section[2.3]

2.1 Problem Setting

We now formalize the domain adaptation problems that we address in this paper. We will make use of
the terminology of the recently proposed Joint Causal Inference (JCI) framework (Mooij et al., 2018).

Let us consider a system of interest described by a set of system variables {X;};jc 7. In addition, we
model the domain in which the system has been measured by context variables {C;};cz (we will use
“context” as a synonym for “domain”’). We will denote the tuple of all system and context variables
as V = ((Xj)jer,(Ci)iez). System and context variables can be discrete or continuous. As a
concrete example, the system of interest could be a mouse. The system variables could be blood cell
phenotypes such as the concentration of red blood cells, the concentration of white blood cells, and
the mean red blood cell volume. The context variables could indicate for example whether a certain
gene has been knocked out, the dosage of a certain drug administered to the mice, the age and gender
of the mice, or the lab in which the measurements were done. The important underlying assumption
is that context variables are exogenous to the system, whereas system variables are endogenous. The
interventions are not limited to the perfect (“surgical”) interventions modeled by the do-operator of
Pearl| (2009), but can also be other types of interventions such as mechanism changes (Tian and Pearl|
2001), soft interventions (Markowetz et al.,|2005)), fat-hand interventions (Eaton and Murphy, [2007),
activity interventions (Mooij and Heskes|, |2013)), and stochastic versions of all these. Knowledge
of the intervention targets is not necessary (but is certainly helpful). For example, administering
a drug to the mice may have a direct causal effect on an unknown subset of the system variables,
but we can simply model it as a binary exogenous variable (indicating whether or not the drug was
administered) or a continuous exogenous variable (describing the dosage of the administered drug)
without specifying in advance on which variables it has a direct effect. We can now formally state the
domain adaptation task that we address in this work:

Task 1 (Domain Adaptation Task). Given are data for a single or multiple source domains, in each
of which Cy = 0, and for a single or multiple target domains, in each of which C; = 1. Assume the
source domains data is complete (i.e., no missing values), and the target domains data is complete
with the exception of all values of a certain target variable Y = X;. The task is to predict these
missing values of the target variable Y given the available source and target domains data.

"More precisely, we should say that P(Y | X3, C; = 1) may differ from P(Y"| X3, C1 = 0), and similarly
when conditioning on { X1, X3}.
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Figure 2: Example of a causal domain adaptation problem. The causal graph is depicted on the right,
the corresponding data on the left. The task is to predict the missing values of Y = X5 in the target
domains (C; = 1), based on the observed data from the source domains and the target domains,
without knowledge of the causal graph. See also Example E}

An example is provided in Figure 2] In the next subsection, we will formalize our assumptions to
make this task a well-posed problem.

2.2 Assumptions

Our first main assumption is that the data generating process (on both system and context variables)
can be represented as a Structural Causal Model (SCM) (see e.g., (Pearl, [2009)):

C; = gi(EPA(i)ﬂ)C)a i€l
M:qX; = fi(Xea)ng Coa)nzs Eeagiynk) Jjed (1
p(E) = Ilpex P(Ek).

Here, we introduced exogenous latent independent “noise” variables (Ey)rex that model any latent
causes of the context and system variables. The parents of each variable are denoted by PA(-). There
could be cyclic dependencies, for example due to feedback loops, but for simplicity of exposition we
will discuss only the acyclic case here, noting that the extension to the cyclic case is straightforward.
This SCM provides a causal model for the distributions of the various domains, and in particular, it
induces a distribution P(V') on the context and system variables.

The SCM M can be represented graphically by its causal graph G(M), a graph with nodes Z U J
(i.e., the labels of both system and context variables), directed edges I; — Il for l1,lo € ZU J iff
l; € PA(l2), and bidirected edges l; <> I3 forly,ly € TU J iff there exists a k € PA(l1) NPA(l2) NK.
In the acyclic case, this causal graph is an Acyclic Directed Mixed Graph (ADMG), and M is also
known as a Semi-Markov Causal Model (see e.g., (Pearl, |2009)). The directed edges represent direct
causal relationships, and the bidirected edges represent hidden confounders (both relative to the set
of variables in the ADMG). The (causal) Markov assumption holds (Richardson, 2003), i.e., any
d-separation A L B|S [G(M)] between sets of random variables A, B, S C V in the ADMG
G (M) implies a conditional independence A I B | S [P(V)] in the distribution P(V') induced by
the SCM M. A standard assumption in causal discovery is that the joint distribution P(V') is faithful
with respect to the ADMG G (M) (i.e., that there are no other conditional independences in the joint
distribution than those implied by d-separation).

We will make the following assumptions on the causal structure (where henceforth we will simply
write G instead of G(M)), which are discussed in detail by Mooij et al.| (2018):

Assumption 1 (JCI Assumptions). Let G be a causal graph with variables V' (consisting of system
variables {X;};c 7 and context variables {C; }ic1).

(i) No variable directly causes any context variable ( “exogeneity”)
(VJGJ,VZGIXJ—)CZ¢Q, VZ,Z/GICy—)Cl¢g),
(ii) No system variable is confounded with a context variable (“randomization”)
(VjEJ,VZ’EIZXj <—>Cz¢g),
(iii) Every pair of context variables is confounded (“genericity”)
(Vi,i/ ETL:C;+ Cyeqg).

In addition, in order to be able to address the causal domain adaptation task, we will assume:



Assumption 2. Let G be a causal graph with variables V' (consisting of system variables {X;}jc s
and context variables {C; }icz), and P(V') be the corresponding distribution on V. Let Cy be the
source/target domains indicator and 'Y = X the target variable.

(i) The distribution P(V') is Markov and faithful w.rt. G;
(ii) Any conditional independence involving Y in the source domains also holds in the target
domains, i.e., if AU B U S contains Y but not Cy then.ﬂ

ALB|S[C;=0] = ALB|S[C,=1];
(iii) C1 has no direct effecton’Y wrt. V,ie, C1 =Y ¢ G.

The Markov and faithfulness assumption is standard in constraint-based causal discovery on a
single domain; we apply it here on the “meta-system” composed of system and context. Note that
Assumption does not exclude the possibility of additional independences holding in the target
domains, e.g., when C; models a perfect surgical intervention. Note further that Assumption
gets weaker the more relevant system variables are observedE] In the next subsections, we will discuss
how these assumptions enable us to address the domain adaptation task.

2.3 Separating Sets of Features

Our approach to addressing Task|[1]is based on finding a separating set A C V' \ {C1,Y } of (context
and system) variables that satisfies C1 L Y| A [G]. If such a separating set A can be found, then the
distribution of Y conditional on A is invariant under transferring from the source domains to the
target domains, i.e., P(Y | A,C; = 0) = P(Y | A, C; = 1). As the former conditional distribution
can be estimated from the source domains data, we directly obtain a prediction for the latter, which
then enables us to predict the values of Y from the observed values of A in the target domainsﬂ

We will now discuss the effect of the choice of A on the quality of the predictions. For simplicity
of the exposition, we make use of the squared loss function and ignore finite-sample issues. When
predicting Y from a subset of features A C V' \ {Y,C}}, the optimal predictor is defined as
the function Y’ mapping the domain of A to the domain of Y that minimizes the target domains
risk E((Y — V)20, = 1), and is given by the conditional expectation (regression function)
YVi(a):=E(Y|A =a,C; =1). Since Y is not observed in the target domains, we cannot directly
estimate this regression function from the data.

One approach that is often used in practice is to ignore the difference in distribution between source
and target domains, and use instead the predictor Y{(a) := E(Y | A = a, C} = 0), which minimizes
the source domains risk E((Y — Y)?| Cy = 0). This approximation introduces a bias Y} — Y3 that
we will refer to as the fransfer bias (when predicting Y from A). When ignoring that source domains
and target domains have different distributions, any standard machine learning method can be used to
predict Y from A. As the transfer bias can become arbitrarily large (as we have seen in Example|[T),
the prediction accuracy by this solution strategy may be arbitrarily bad (even in the infinite-sample
limit).
Instead, we propose to only predict Y from A when the set A of features satisfies the following
separating set property:

Cy LY |Ad], )
i.e., it d-separates C from Y in G. By the Markov assumption, this implies C; LY | A [P(V')]. In
other words, for separating sets, the distribution of Y conditional on A is invariant under transferring
from the source domains to the target domains, i.e., P(Y |A,C; = 0) = P(Y |A,C; = 1). By

Here, with A I B | S [Cy = 0] we mean A I B|S [P(V | C1 = 0)], i.e., the conditional independence
of A from B given S in the mixture of the source domains P(V | C; = 0), and similarly for the target domains.

3This assumption can be weakened further: in some circumstances one can infer from the data and the other
assumptions that C'; cannot have a direct effect on Y. For example: if there exists a descendant D € DE(Y'),
and if there exists aset S C V' \ ({C1,Y} UDE(Y")), such that C; L D | S, then C is not a direct cause of Y’
w.r.t. V. For some proposals on alternative assumptions that can be made when this assumption is violated, see
e.g., (Scholkopf et al., 2012} [Zhang et al.,|2013|2015; Gong et al., [2016)).

*This trivial observation is not novel; see e.g. (Ch. 7, p. 164, [Spirtes et al.l 2000). It also follows as a special
case of (Theorem 2, Pearl and Bareinboim| 2011). The main novelty of this work is the proposed strategy to
identify such separating sets.



virtue of this invariance, regression functions are identical for the source domains and target domains,
1.e., Y9 = )A/}‘ and hence also the source domains and target domains risks are identical when using
the predictor Y3:

Ci LY|AG] = E((Y -Y3)?|Ci=1)=E((Y - Y3)*|C1 =0). 3)
The r.h.s. can be estimated from the source domains data, and the 1.h.s. equals the generalization
error to the target domains when using the predictor Yg trained on the source domains (which equals

the predictor )A/}l that one could obtain if all target domains data, including the values of Y, were

observed)E] Although this approach leads to zero transfer bias, it introduces another bias: by using
only a subset of the features A, rather than all available features V' \ {C4, Y}, we may miss relevant

information to predict Y. We refer to this bias as the incomplete information bias, Y‘l,\ v, Ya.

The total bias when using Yg to predict Y is the sum of the transfer bias and the incomplete
information bias:

Y\I/\{Y,Cl} —Yi=(Va-YQ+ (Yxlf\{y,cl} —-Ya).
| T — —

total bias transfer bias incomplete information bias

For some problems, one may be better off to simply ignore the transfer bias and minimize the
incomplete information bias, while for other problems, it is crucial to take the transfer into account to
obtain small generalization errors. In that situation, we could use any subset A for prediction that
satisfies the separating set property (2), implying zero transfer bias; obviously, the best predictions
are then obtained by selecting a separating subset that also minimizes the source domains risk (i.e.,
minimizes the incomplete information bias). We conclude that this strategy of selecting a subset
A to predict Y may yield an asymptotic guarantee on the prediction error by (3), whereas simply
ignoring the shift in distribution may lead to unbounded prediction error, since the transfer bias could
be arbitrarily large in the worst case scenario.

2.4 Identifiability of Separating Feature Sets

For the strategy of selecting the best separating sets of features as discussed in Section [2.3] we
need to find one or more sets A C V' \ {C1, Y} that satisfy . Of course, the problem is that we
cannot directly test this in the data, because the values of Y are missing for C; = 1. Note that also
Assumption cannot be directly used here, because it only applies when C'; is not in AU B. When
the causal graph G is known, it is easy to verify whether (2)) holds directly using d-separation. Here
we address the more challenging setting in which the causal graph and the targets of the interventions
are (partially) unknownE] Conceptually, what one could do is first estimate the causal graph by using
a causal discovery algorithm, and then read off separating sets from the estimated causal graph.
However, it is not necessary to estimate the complete causal graph: we only need to know enough
about it to verify or falsify whether a given set of features separates C; from Y.

Example 2. Assume that Assumptions[I|and 2| hold for two intervention variables Cy, Cy and three
system variables X1, Xo, X3 with Y = Xs. If the following conditional (in)dependences all hold in
the source domains:

CQJ.LX2‘X1 [0120], CQ,[XQl@[CH:O], CQJLX3|X2 [01:0],

then C; L X5| X1 [G), i.e, {X1} is a separating set for C1 and Y. One possible causal graph
leading to those (in)dependences is provided in Figure2|(others are shown in Figure[dd)). For that
ADMG, and given enough data, feature selection applied to the source domains data will generically
select { X1, X3} as the optimal set of features for predicting Y, which can lead to an arbitrarily large
prediction error. On the other hand, using the separating set { X1} to predict Y leads to zero transfer
bias, and therefore provides a guarantee on the target domains risk (i.e., it provides an upper bound
on the optimal target domains risk, which can be estimated from the source domains data).

Note that this equation only holds asymptotically; for finite samples, in addition to the transfer from source
domains to target domains, we have to deal with the generalization from empirical to population distributions
and from the covariate shift if P(A | C, = 1) # P(A | Cy, = 0) (see e.g. Mansour et al.,2009).

% Another option, proposed by [Rojas-Carulla et al. (2016), would be to assume that if p(Y | A) is invariant
across all source domains (i.e., p(Y | A,C1 = 0,C\; = ¢) = p(Y | A,C1 = 0) for all ¢), then the same
holds across all source and target domains (i.e., p(Y | A,C1 = 1) = p(Y | A,C1 = 0)). This is a different
assumption than the ones we are making here, and ExampleE] shows a simple case in which it would be violated.



Rather than characterising by hand all possible situations in which a separating set can be identified
(like in Example[2), in this work we delegate the causal reasoning to an automatic theorem prover.
Intuitively, the idea is to provide the automatic theorem prover with the conditional (in)dependences
that hold in the data, in combination with an encoding of Assumptions [I]and [2]into logical rules,
and ask the theorem prover whether it can prove that C; L Y | A holds for a candidate set A from
the assumptions and provided conditional (in)dependences. There are three possibilities: either it
can prove the query (and then we can proceed to predict Y from A and get an estimate of the target
domains risk), or it can disprove the query (and then we know A will generically give predictions that
suffer from an arbitrarily large transfer bias), or it can do neither (in which case hopefully another
subset A can be found that does provably satisfy (2)).

2.5 Implementation Details

A simple (brute-force) implementation of our proposed approach is the following. By using a standard
feature selection method, produce a ranked list of subsets A C V' \ {Y, C4}, ordered ascendingly
with respect to the empirical source domains risks. Going through this list of subsets (starting with
the one with the smallest empirical source domains risk), test whether the separating set property can
be inferred from the data by querying the automated theorem prover. If () can be shown to hold, use
that subset A for prediction of Y and stop; if not, continue with the next candidate subset A in the
list. If no subset satisfies , abstain from making a prediction[]

An important consequence of Assumption [2f{i1) is that it enables us to transfer conditional indepen-
dence involving the target variable from the source domains to the target domains (proof provided in
the Supplementary Material):

Lemma 1. Under Assumption[2]
ALB|S[C;=0] <= ALB|SU{C} — ALB|SU{C:1} ][9]
for subsets A, B, S C 'V such that their union contains Y but not C.

To test the separating set condition (2)), we use the approach proposed by Hyttinen et al.| (2014), where
we simply add the JCI assumptions (Assumption I]) as constraints on the optimization problem, in
addition to the domain-adaptation specific assumption that C; — Y ¢ G (Assumption 2iii)). As
inputs we use all directly testable conditional independence test p-values p4 | g | s in the pooled
data (when Y ¢ AU B U S) and all those resulting from Lemma [I] from the source domains data
only (if Y € AU B U S). If background knowledge on intervention targets or the causal graph is
available, it can easily be added as well. We use the method proposed by |[Magliacane et al.|(2016) to
query for the confidence of whether some statement (e.g., Y L C4 | A) is true or false. The results of
Magliacane et al.|(2016]) show that this approach is sound under oracle inputs, and asymptotically
consistent whenever the statistical conditional independence tests used are asymptotically consistent.
In other words, in this way the probability of wrongly deciding whether a subset A is a separating
set converges to zero as the sample size increases. We chose this approach because it is simple to
implement on top of existing open source codeﬂ Note that the computational cost quickly increases
with the number of variables, limiting the number of variables that can be considered simultaneously.

One remaining issue is how to predict Y when an optimal separating set A has been found. As the
distribution of A may shift when transferring from source domains to target domains, this means that
there is a covariate shift to be taken into account when predicting Y. Any method (e.g., least-squares
regression) could in principle be used to predict Y from a given set of covariates, but it is advisable
to use a prediction method that works well under covariate shift, e.g., (Sugiyama et al., [2008).

7 Abstaining from predictions can be advantageous when trading off recall and precision. If a prediction has
to be made, we can fall back on some other method or simply accept the risk that the transfer bias may be large.

8We build on the source code provided by Magliacane et al.| (2016) which in turn extends the source code
provided by Hyttinen et al.|(2014). The full source code of our implementation and the experiments will be
made available under an open source license on publication.



3 Evaluation

We perform an evaluation on both synthetic data and a real-world dataset based on a causal inference
challengeﬂ The latter dataset consists of hematology-related measurements from the International
Mouse Phenotyping Consortium (IMPC), which collects measurements of phenotypes of mice with
different single-gene knockouts.

In both evaluations we compare a standard feature selection method (which uses Random Forests)
with our method that builds on top of it and selects from its output the best separating set. First, we
score all possible subsets of features by their out-of-bag score using the implementation of Random
Forest Regressor from scikit-learn (Pedregosa et al., [2011) with default parameters. For the
baseline we then select the best performing subset and predict Y. Instead, for our proposed method
we try to find a subset of features A that is also a separating set, starting from the subsets with the best
scores. To test whether A is a separating set, we use the method described in Section[2.5] using the
ASP solver clingo 4.5.4 (Gebser et al.,[2014)). We provide as inputs the independence test results
from a partial correlation test with significance level a = 0.05 and combine it with the weighting
scheme from (Magliacane et al.| [2016). We then use the first subset A in the ranked list of predictive
sets of features found by the Random Forest method for which the confidence that C; L Y| A holds
is positive. If there is no set A that satisfies this criterium, then we abstain from making a prediction.

For the synthetic data, we generate randomly 200 linear acyclic models with latent variables and
Gaussian noise, each with three system variables, and sample N data points each for the observational
and two experimental domains, where we simulate soft interventions on randomly selected targets,
focusing on small, medium and large perturbations. We randomly select which intervention variable
will be C'; and which system variable will be Y. We disallow direct effects of C; on Y, and enforce
that no intervention can directly affect all variables simultaneously. Figure [3a|shows a boxplot of
the Lo loss of the predicted Y values with respect to the true values for both the baseline and our
method, considering the 120 cases out of 200 in which our method does produce an answer. In
particular, Figure[3a considers the case of N' = 1000 samples per regime and interventions that all
produce a large perturbation. In the Supplementary Material we show that results improve with more
samples, both for the baseline, but even more so for our method, since the quality of the conditional
independence tests improves. We also show that, according to expectations, if the target distribution
is very similar to the source distributions, i.e., the transfer bias is small, our method does not provide
any benefit and seems to perform worse than the baseline. Conversely, the larger the intervention
effect, the bigger the advantage of using our method.

For the real-world dataset, we select a subset of the variables considered in the CRM Causal Inference
Challenge. Specifically, for simplicity we focus on 16 phenotypes that are not deterministically
related to each other. The dataset contains measurements for 441 “wild type” mice and for about 10
“mutant” mice for each of 13 different single gene knockouts. We then generate 1000 datasets by
randomly selecting subsets of 3 variables and 2 gene knockouts interventions, and always include
also “wild type” mice. For each dataset we randomly choose Y and C1, and remove the values of
Y for C; = 1. Figure [3b]shows a boxplot of the Ly loss of the predicted Y~ values with respect to
the real values for the baseline and our method. Given the small size of the datasets, this is a very
challenging problem. In this case, our method does not perform better than the baseline, and abstains
from making a prediction for 170 cases out of 1000.

4 Discussion and Conclusion

We have defined a general class of causal domain adaptation problems and proposed a method that can
identify sets of features that lead to transferable predictions. Our assumptions are very general and
do not require the causal graph or the intervention targets to be known. The method gives promising
results on simulated and real-world data. More work remains to be done on the implementation side,
for example, scaling up to more variables. We hope that this work will also inspire further research
on the interplay between bias, variance and causality from a statistical learning theory perspective.

Part of the CRM workshop on Statistical Causal Inference and Applications to Genetics, Montreal, Canada
(2016). See alsohttp://www.crm.umontreal.ca/2016/Genetics16/competition_e.php
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(a) Synthetic data with N = 1000 samples (b) Real-world data
and a large perturbation

Figure 3: Evaluation results (see main text and Supplementary Material for details).
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Figure 4: ADMGs for proof of Example[2] Each dashed edge can either be present or absent.

Supplementary material

Proofs

Proof of Lemmalll First of all, A Y B|S [C; = 0] implies (by definition) A ¥ B|S U {C4}.
Second, A I B|S [C; = 0] implies (by assumption) A 1 B |S [C; = 1], and taken together, we
get AL B|S U{C,}. By the Markov and faithfulness assumption (Assumption [2{i)), this holds iff
A1l B|SuU{Ci}[G]. O

Proof of Example@} In the JCI setting, we assume that in the full ADMG G over variables
{C1,C2, X1, X5, X3}, Cy and C5 are confounded and not caused by system variables X1, X5, X3.
Furthermore, no pair of system variable and intervention variable is confounded.

In the context [C; = 0], if the conditional independences Cs L X5 |X; [C; = 0] and
Cy Y X5|0 [Cy; = 0] hold, then we can also derive that Co X X7 |0 [C; = 0], for example
using Rule (9) from [Magliacane et al.| (2016)). Moreover, we know that C'5 is not caused by X;
and X5, or in other words X; -4+ Co and X5 -£» Cs. Thus we conclude that (Cs, X7, X3) is an
LCD triple (Cooper, [1997) in the context C; = 0. Since in addition, in this case C5 and X; are
unconfounded, the marginal ADMG G’ on {C5, X1, X5} (in the context C; = 0, and hence by
Lemma(T]in all contexts) must be given by Figure

Therefore, the extended marginal ADMG G” on variables {C7, C, X1, X5} must also have a directed
path from C5 to X7 and from X to X5. C7 cannot be on these paths, as none of the variables causes
C1, and therefore G also contains the directed edges Cy — X3 and X; — X5. Moreover, G” cannot
contain any edge between Cs and X5, nor a bidirected edge between X7 and X5, because that would
violate the conditional independence. By construction, in the JCI setting there is a bidirected edge
between C; and (', and that is the only bidirected edge connecting to C or C5. As we assumed
there is no direct effect of C on target X5, there is no edge between C; and X5 in G”. There is
also no directed edge X; — C7 in G”, as the JCI assumption implies none of the other variables
causes C. Therefore, the marginal ADMG G” is given by Figure [4b] either with the directed edge
C7 — X present, or without that edge.

If it additionally holds that Cy 1L X3 | X5 [C] = 0], we have two possibilities:

1. if Cy 1L X3 |0 [Cy = 0] holds, then X3 is not caused by Cs. This means it cannot be on any
directed path from C to X7, from X; to Xo, or be a descendant of X5. Therefore the full
ADMG G also necessarily contains the directed edges Cy; — X3 and X; — Xo.

2. if Co £ X350 [Cy = 0] holds, then in conjunction with Co L X3 | X5 [C; = 0] we can
derive Xy --+ X3, for example using Rule (5) from (Magliacane et al.| 2016)). This means
X3 must be a descendant of X5 in the full ADMG G, which implies it cannot be on the
directed path from C5 to X7, or on the one from X7 to X5. Therefore the full ADMG G
also necessarily contains the directed edges Co — X; and X; — Xo.

Because of the independence statements and JCI assumptions, there cannot be a bidirected edge
between X3 and X3, X, C; or Cy. Similarly, there cannot be directed edges from X3 to one of
those nodes. The edges X; — X3 and Cs — X3 must also be absent.
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In both cases, there can be a directed edge from C; to X3. Therefore, the full ADMG G is given by
Figure[dc] In all cases we see that C; L X5 | X; [G], and we conclude that { X } is a valid separating
set.

If the ADMG is as in Figure[2] then a standard feature selection method would asymptotically prefer
the subset { X1, X3} to predict X5 over the subset {X;} (note that the Markov blanket of X5 in
context [C = 0] is { X1, X3}). As aresult, any prediction method trained on all available features
using source domain data (i.e., in context [C; = 0]) may incur a possibly unbounded prediction error
when used to predict X5 in the target domain [C; = 1] (for example, if X3 is an almost deterministic
copy of X5 if C'y = 0, but has a drastically different distribution if C; = 1). O

Additional results on synthetic data

We provide some additional results on the synthetic data. We generate randomly 200 linear acyclic
models with a small random number of latent variables and Gaussian noise, each with three system
variables. Similarly to the evaluation in the main paper, we sample N data points each for the
observational and two experimental domains, and simulate soft interventions on randomly selected
targets. These interventions have linear coefficients sampled from A(0.2,0.8), for which we ran-
domly select the sign. In order to scale the effect of these interventions we multiply the coefficients
for all interventions by the parameter /Factor, varying it from 0.1 to 100. Moreover, we randomly
select C7 and Y from intervention and system variables respectively. We disallow direct effects of C
on Y, and enforce that no intervention can directly affect all variables simultaneously.

As expected, our method performs well when the target distribution is significantly different than the
source distributions. Figure[5]shows different settings with different scales of intervention effects. In
Figure [5a|the intervention effects are all scaled by 0.1, resulting in very similar distributions in all
domains. In this case, using our method does not offer any advantage with respect to the baseline and
it actually performs worse. In the other cases, using our method starts to pay off in terms of prediction
accuracy, and the difference increases with the scale of the interventions, as seen in Figure [5d}

In Figure [6] we vary the number of samples N for each regime. The results improve with more
samples, especially for our method, since the quality of the conditional independence test improves,
but also for the baseline. In particular, as shown in Figure[6a] the accuracy is low for N=100 samples,
but it improves substantially with N=1000 samples (Figure [5b).
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Method

(a) Synthetic data with a very small perturbation
(IFactor=0.1) and N=1000 samples (zoomed ver-
sion)

(c) Synthetic data with a medium perturbation
(IFactor=10) and N=1000 samples
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Method

(b) Synthetic data with a small perturbation (IFac-
tor=1) and N=1000 samples (zoomed version)

L

Method

(d) Synthetic data with a large perturbation (IFac-
tor=100) and N=1000 samples

Figure 5: Additional results when varying the causal effect of all interventions (IFactor).
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(a) Synthetic data with N=100 samples per regime
and a medium perturbation (IFactor=10)

L2l0ss

Ll

(b) Synthetic data with N=1000 samples per regime
and a medium perturbation (IFactor=10)

i !

(c) Synthetic data with N=5000 samples per regime
and a medium perturbation (IFactor=10)

Figure 6: Additional results when varying the sample size per regime (N).
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