String Theory

Take Home Set 3
Hand in on May 23, 2007

The Torus

In string theory in Euclidean signature, the world-sheet can have different topolo-

gies. It can be two-sphere, a torus, or a more complicated surface. When we studied

the string world-sheet, we assumed that we could always choose a gauge such that

GaB = Nap, OF gap = 0qp in Euclidean signature. However, one can not always make
such a gauge choice globally. We will now study this for the case of the torus. We start

with a two-torus, parametrized by two coordinates (z',z?) = (x,y) such that x is iden-
tified with x+1 and y is identified with y+1 as well. We will take an arbitrary metric

ds® = gaﬂdajo‘dazﬁ with a, = 1,2, where gog(x,y) = gap(z + 1,y) = gop(z,y + 1).

1)
2)

Explain why this does describe a two-torus.

In any dimension the following identity holds:

1
5 / d®z\/gR = / d®z5g" (R, — 5 -

This is how one derives the Einstein equations from an action principle. Use this
to show that o f de\/yR is invariant in two dimensions under small variations
of the metric.

Use this to show that [ d*z,/gR = 0 for all metrics on the two torus. (Hint: use
the previous problem to deform the metric to a simple one and then explicitly
evaluate [ d°z,/gR.)

For a function f(z!,x?), the Laplacian V?f is defined by the following equation
(valid for all functions h)

/ d*x\/ghVif = — / d*x\/g99*? 0, hos f.

This definition also shows that V2 is an Hermitian operator and therefore it can
be diagonalized. Show that the only eigenfunctions with eigenvalue zero are the
constant functions.

Use this to show that for all Ricci scalars R that satisfy [ d*z,/gR = 0, we can
always find a function f such that V2f = R.



It is straightforward to show that the Ricci scalar of the metric e/ Jap €quals
Rle! gas] = €7/ (Rlgap) — V*f)

and therefore we have now shown that for any metric on the two-torus we can al-
ways find a Weyl transformation that makes the Ricci scalar identically zero. In
two dimensions, vanishing Ricci scalar implies vanishing Riemann tensor, and if the
Riemann tensor vanishes we can always find coordinates such that the metric is that
of Euclidean R?. It is however not guaranteed that the periodic identifications of
the coordinates are preserved. From now on we will work with complex coordinates
w, barw so that the standard metric of Euclidean R? is ds? = dwdw. Therefore, what
we have demonstrated so far is that the metric of any two-torus can with the help of
a Weyl transformation and a diffeomorphism be put in the form

ds* = dwdw (1)
with periodic identifications
w ~ w ~+ W, W~ W+ wy (2)
for some wy, wy. This can be simplified a bit further.

6) Show that we can always find a combination of a diffeomorphism of the form
w — Aw and a Weyl rescaling that preserves the form of the metric (1) but
makes wg = 1.

After we put wg = 1, there is only one free parameter left, namely w;. This parameter
is usually called 7. Two-tori that have different values of the parameter 7 cannot in
general be mapped into each other using a combination of diffeomorphisms and Weyl
rescalings: there is a one-parameter family of conformally inequivalent tori. The
integral over all metrics in the Polyakov path integral can be reduced to an integral
over the single parameter 7 by appropriate gauge fixing, but this final integral remains
and has to be done by hand. The complex parameter 7 determines the shape of the
torus.

This parameter 7 can be thought of as follows: a torus is created by taking a
parallelogram, and gluing opposite edges together. This parallelogram is embedded
in the complex plane such that one of the corners is the origin, and the other corners
are at 1,7 and 1+ 7 (see figure 1), where 7 is in the upper right quarter of the plane.
In other words, the parallellogram is defined by the relations

w = w+1

w = wH+T (3)
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Figure 1: A torus is created by identifying opposite edges of a parallellogram.

If we conformally map w to z = e*™_ the first equivalence is automatically satisfied.
The second equivalence translates into

Z = qz, q = e, (4)

In a picture, this looks like figure 2. We can take an annulus as the fundamental
region, and identify the inner and outer circle. However, in this identification, there
is a twist: the point 1 is identified with the point q.
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Figure 2: A torus as an annulus in the z-plane.

We will now calculate the partition function Z for a single free scalar field X on
the torus. A priori, Z will depend on 7. In general, Z will not be a holomorphic
function, so we write Z(7, 7). We also write 7 = 7 + i7.

Once again, look at figure 2. If we view this picture as a string diagram, we see
that what happens between the inner and the outer circle are two things. First of all,
(remember time runs radially), there is a propagation in time. The duration of this
propagation is 2m7,. Second of all, there is a translation along the spatial direction



(i. e. along the circle) of length 277y. The operator that achieves both these facts is

i P — 2 H = 2rLo(imy — 1) + 2w Lo(—im — 73) + %
= 2miLyT — 2mileT + %, (5)

where we used P = Ly — Ly and H = Lo+ Lo — % The latter constant is the central
charge for a single free bosonic field.

7) Verify this and explain the form of P and H.

If you think back about the standard (Feynman) derivation of the path integral
for quantum mechanics, that derivation shows that
(t1)==y

erlexnlit —t0) B/me) = [ TDowenn(] [dne ). ©

(to):$¢
If we now put xy = x; = z and integrate over x, and at the same time go to Euclidean
time ¢t — itg, then the right hand side of this equation becomes an Euclidean path
integral with periodic boundary conditions. The left hand side becomes

/d:c(x| exp(—Atg H/h)|x) = Tr(exp(—Atg H/h)) (7)

which is the finite temperature partition function of the quantum mechanical system.
This demonstrates the equivalence of the finite temperature partition function to the
Euclidean path integral with periodic boundary conditions.

By generalizing these arguments to the case of a free scalar field on a Euclidean
two-torus, one finds a similar result. It can be shown that the Euclidean partition
function is equivalent to exponentiating (5) and taking the trace of this operator over
the Hilbert space!:

Z(7,7) = (q9)"/**Te(¢"q"). (8)
Taking the trace over the Hilbert space means sandwiching an operator between all

basis states and summing (or if necessary integrating) over these states (as illustrated
above in the case of quantum mechanics).

8) Show that for a finite dimensional Hilbert space, this prescription corresponds
to the familiar definition of the trace of a matrix.

9) In evaluating this expression, we use the fact that Ly on a certain state counts
the right-moving oscillations and adds the square of the momentum; Ly does
the same on the right-moving side. Show that this means that

2(r,7) = Clqq) ™"/ / dkexp(~mra k) [T D2 o™, (9)

n Np,N,=0

'We will not prove this here; for an example, the reader is referred to Evaluation of the one loop
string path integral by Polchinski; Commun. Math. Phys. 104 (1986), pp. 37-47
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where C' is a normalization constant, and N, is the occupation number of the
harmonic oscillator formed by a,, a_n, and N, is the occupation number of the
harmonic oscillator formed by a&,,, & .

The Gaussian integral is easily evaluated; for the sums we use the identity

1
N
E o’ =T (10)
N=0

Inserting this, we arrive at the final expression

_1j24 |

T g
H(l—qn)

n=1

Z(1,7) = C(4r%a'ry) 1/ (11)

10) Verify this.

It turns out that this partition function enjoys a further discrete symmetry called
modular invariance, in important property of string theory. The origin of this symme-
try is the fact that not all different 7 correspond to different tori. As an example, look
at figure 3. If we want to construct a torus, we take some fundamental parallelogram
in the plane, and impose periodicity — which is the same as gluing the opposite sides of
the parallelogram together. However, note that there is no difference between taking
the parallelogram in solid lines as the fundamental one and taking the parallelogram
in dashed lines; both correspond to the same torus.

Figure 3: Two equivalent fundamental regions for a torus.

It can be shown that two fundamental regions with sides [, Iy and [/}, I, correspond
to the same torus if and only if

I a b [y
= 12
(lé) (Cd><52)’ 12)
where the matrix is an element of SL(2,7Z), i. e. a,b, ¢, d are integers and the deter-

minant ad — bc = 1. The proof of this fact is not very difficult; it consists of the
following three observations:



e The endpoints of /] and [}, should be identified with their starting points (i. e.
the origin). This means these points have to be lattice points in the original
lattice. In other words: a,b, c,d have to be integers.

e From elementary vector calculus, we know that the absolute value of the deter-
minant of the transformation matrix (the Jacobian) gives the change in area of
the parallelogram. Therefore, ad — bc = £1. By changing the order of /| and [,
(i. e. interchanging two rows), we can always choose the determinant to be +1.

e From the above two points, we see that any transformation that gives the same
torus has to be an SL(2, Z)-transformation. To prove the converse, note that we
can cover the entire plane with parallelograms with sides /], I},. Since the area
of the new parallelogram is equal to the area of the old one, there cannot be any
lattice points of the old lattice inside the fundamental area of the first one. The
converse of course also holds, since the inverse of an SL(2,Z)-transformation
is again an SL(2,Z)-transformation. Therefore, the two lattices consist of the
same points, and hence the tori are the same.

11) Translate the equivalence between the sides of the parallelogram to an equiva-
lence relation for the values of 7. These equivalence relations are the so-called
modular transformations for 7.

12) (Optional, very difficult) Show that the partition function in equation (11) is
invariant under this equivalence relation, in other words that it is modular
invariant.

All of this means that we should not integrate 7 over the entire complex plane, but
only over a part of this space, which can be denoted by F = C/SL(2,Z).



