
Relativistic notation

The theories we will consider are consistent with special relativity. To make explicit how
the different quantities transform under Lorentz transformations it will be convenient to
use four-vector notation. A point in space-time is described by a four component vector
xµ = (x0, x1, x2, x3) = (t, x, y, z), where we chose units such that c = 1. According to
special relativity the inner product

(x0)2 − (x1)2 − (x2)2 − (x3)2 = xµηµνxν

is the same for observers in any inertial frame. Here the Greek indices run from 0 to 3, and
ηµν is the matrix diag(1,−1,−1,−1). Furthermore we used the summation convention:
indices that appear twice are summed over. Since this inner product is preserved under
Lorentz transformations,

xµ
→ Lµ

νx
ν ,

we conclude that these transformations should satisfy the rule

LT ηL = η or Lρ
µLσ

νηρσ = ηµν .

Note that the three dimensional rotations are contained in the Lorentz group. In order to
avoid having to write numerous η’s, four-vectors with lower indices are introduced:

xµ = ηµνxν or (x0, x1, x2, x3) = (t,−x,−y,−z).

If one wants to construct a Lorentz invariant expression, one only has to make sure that
all upper indices are contracted with lower indices. Apart from the coordinates there
are other quantities that transform as four-vectors, e.g. the energy and momentum pµ =
(E, px, py, pz). Furthermore we can consider Lorentz tensors of arbitrary rank, T µ1···µr ,
which by definition transform under Lorentz transformations as

T µ1···µr → Lµ1

ν1
. . . Lµr

νr
T ν1···νr .

Indices can be lowered using η, e.g.

Tµ1

µ2···µr = ηµ1νT
ν···µr .

Again invariant quantities can be formed by contracting all upper indices with an equal
number of lower indices.
The reader should verify that the derivative with respect to xµ transforms as a vector with
a lower index:

∂

∂xµ
= ∂µ.

(Write x′µ = Lµ
νx

ν and use the composition rule for derivatives).

Fields

A field φ assigns to each point x in spacetime a quantity φ(x). This quantity may be a
real or complex number, vector, tensor, etc. As examples one may think of temperature,
velocity of flow in a liquid, stress in a solid body, or the electric and magnetic fields known
from Maxwell theory. The dynamics of the field theory are described by a set of differential
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equations the fields satisfy (e.g. the Maxwell equations). After quantization a large class
of relativistic field theories describe particles.
Under Lorentz transformations x → x′(x), the fields transform as discussed in the previous
section, but also their arguments are transformed. The relations between the transformed
field, which we will here denote, for the sake of clarity, by a tilde, and the original field
are

T̃ µ1···

α1···
(x′) = Lµ1

ν1
. . . Lα1

β1 . . . T ν1···

β1···
(x(x′)).

Note that to obtain the values of the transformed fields the original fields should be
evaluated in the same point, independent of the choice of coordinates. As an example
consider a scalar field φ(x), which itself does not transform under a transformation, in a
one-dimensional space. Let the transformation be the constant translation x ′ = x − a.
The value of the transformed field φ̃ in the point x′ will be equal to the original field φ in
the point x′ + a. (Draw a picture).

Problem 1 Relativistic scalar field theory

We will set up a field theory for a scalar field φ(x) in the Lagrange formalism. We assume
that the action S[φ] of the field φ(x) is given by

S[φ] =

∫
d4xL(φ, ∂µφ),

where L is the Lagrangian density. This means that L is a local function depending only
on φ and its first derivatives. In analogy to classical mechanics, the variational principle
requires that the action is stationary with respect to infinitesimal variations in the field.
In order to derive the equation of motion for the field from this condition, consider an
infinitesimal variation δφ(x), which vanishes at infinity, of the field φ(x). This gives rise
to a variation of the action:

δS =

∫
d4x δL.

(a) Show that requiring δS to be stationary for any variation δφ gives the Euler-Lagrange
equation

∂L

∂φ
− ∂µ

∂L

∂(∂µφ)
= 0.

Use partial integration and the fact that δφ vanishes at space-time infinity.

Now consider the Lagrangian

L =
1

2
∂µφ∂µφ −

1

2
m2φ2.

Since φ is a scalar field this Lagrangian is Lorentz invariant, and it gives rise to a relativistic
field theory.

(b) Determine the Euler-Lagrange equation for φ. This equation is the Klein–Gordon

equation. Upon quantization the field φ describes free scalar particles of mass m.

If an action is invariant under a continuous group of transformations, Noether’s theorem
states that there exists a conserved quantity associated to this symmetry. We can calculate
this quantity as follows. Let ξ be a constant infinitesimal transformation parameter.
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Invariance of the action implies that the Lagrangian density can only change by a total
derivative, so

δL = ξ∂µΩµ,

for some vector Ω. Let us now take ξ to be x-dependent, where we again require ξ(x) to
vanish at space-time infinity. The variation of the Lagrangian density will now in general
acquire an extra term proportional to the derivative ∂µξ:

δL = ξ∂µΩµ + ∂µξNµ

= ξ∂µJµ + ∂µ (ξNµ) ,

where Jµ = Ωµ − Nµ. Since the second term is a total derivative, and ξ vanishes at the
boundary at infinity, we get for the variation of the action

δS =

∫
d4xξ∂µJµ.

Recall now that under any infinitesimal variation of the fields, the variation of the action
vanishes, provided the Euler-Lagrange equations are satisfied. Since ξ represents a specific
variation of the fields, we can conclude that

∂µJµ = 0

if the fields contained in Jµ satisfy their equations of motion. Jµ is called the conserved
Noether current associated to the symmetry parametrized by ξ.

(c) Show that Q =
∫

d3~xJ0 is a conserved charge, i.e. ∂
∂t

Q = 0, provided the fields evolve
according their equations of motion, and the current falls off fast enough.

(d) Show that the Klein–Gordon Lagrangian is invariant under constant translations,
xµ → xµ + aµ. Demonstrate that the associated conserved current is given by (use that
φ(x − ξ) = φ(x) − ξµ∂µφ(x), to first order in the variation ξµ)

T µν = −ηµν
L + ∂µφ∂νφ.

The first index can be regarded as labelling the component of the current, whereas a second
index arises in this case since there are four independent translations (one in time, three
in space). Note, however, that T µν is symmetric in the two indices. Verify explicitly that
∂µT µν = 0 using the field equation. Calculate the four-vector P µ of conserved charges.
These are the total energy and momentum of the field. For this reason T µν is called the
energy-momentum tensor.

(e) As we saw the Klein–Gordon action is Lorentz invariant. To determine the form of an
infinitesimal Lorentz transformation write Lµ

ν = ηµ
ν + ξµ

ν and use the defining relations
of the Lorentz group to determine the form of the infinitesimal parameter ξµ

ν . Use this
to show that the associated Noether current can be written as

Jµνρ =
1

2
(xνT µρ

− xρT µν).

Write down the conserved charge and interpret its spatial components.
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