
and
Views

on
Software Language Evolution

Vadim Zaytsev
Universiteit van Amsterdam

NLFP 2014

Imperative Declarative

Introduction

Universiteit van Amsterdam
(2013–2014)

Centrum Wiskunde &
Informatica (2010–2013)

Universität Koblenz-Landau
(2008–2010)

Vrije Universiteit Amsterdam
(2004–2008)

Universiteit Twente
(2002–2004)

Rostov State University
(1998–2003)

Vadim Zaytsev

Introduction

Haskell
(2013–2014)

Rascal
(2010–2013)

Prolog
(2008–2010)

Smalltalk
(2004–2008)

XSLT
(2002–2004)

Python
(1998–2003)

Vadim Zaytsev

Part I
SLE background

Software Languages

Programming languages

Software Languages

Programming languages

Functional languages

197 7 A C M T u r i n g A w a r d L e c t u r e

The 1977 ACM Turing Award was presented to John Backus
at the ACM Annual Conference in Seattle, October 17. In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the September
1977 issue of Communications, page 681.

"Probably there is nobody in the room who has not heard of
For t ran and most of you have probably used it at least once, or at
least looked over the shoulder of someone who was writing a For.
t ran program. There are probably almost as many people who
have heard the letters BNF but don' t necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation. These two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer field and both were made by John
Backus (which in the For t ran case also involved some col-
leagues). It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation is for 'profound, influential,
and lasting contributions to the design of practical high-level
programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.'

The most significant part of the full citation is as follows:
' . . . Backus headed a small IBM group in New York City

during the early 1950s. The earliest product of this group's
efforts was a high-level language for scientific and technical corn-

putations called Fortran. This same group designed the first
system to translate For t ran programs into machine language.
They employed novel optimizing techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on IBM machines, and later on virtu-
ally every make of computer. For t ran was adopted as a U.S.
national standard in 1966.

During the latter part of the 1950s, Backus served on the
international committees which developed Algol 58 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
ming languages. The formal notation became known as B N F -
standing for "Backus Normal Form," or "Backus Naur Form" to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. For t ran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.' "

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs
John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author's address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor- - the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978
of Volume 2 i
the ACM Number 8

Software Languages

Programming languages

Functional languages

Declarative languages

197 7 A C M T u r i n g A w a r d L e c t u r e

The 1977 ACM Turing Award was presented to John Backus
at the ACM Annual Conference in Seattle, October 17. In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the September
1977 issue of Communications, page 681.

"Probably there is nobody in the room who has not heard of
For t ran and most of you have probably used it at least once, or at
least looked over the shoulder of someone who was writing a For.
t ran program. There are probably almost as many people who
have heard the letters BNF but don' t necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation. These two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer field and both were made by John
Backus (which in the For t ran case also involved some col-
leagues). It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation is for 'profound, influential,
and lasting contributions to the design of practical high-level
programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.'

The most significant part of the full citation is as follows:
' . . . Backus headed a small IBM group in New York City

during the early 1950s. The earliest product of this group's
efforts was a high-level language for scientific and technical corn-

putations called Fortran. This same group designed the first
system to translate For t ran programs into machine language.
They employed novel optimizing techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on IBM machines, and later on virtu-
ally every make of computer. For t ran was adopted as a U.S.
national standard in 1966.

During the latter part of the 1950s, Backus served on the
international committees which developed Algol 58 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
ming languages. The formal notation became known as B N F -
standing for "Backus Normal Form," or "Backus Naur Form" to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. For t ran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.' "

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs
John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author's address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor- - the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978
of Volume 2 i
the ACM Number 8

build:
 pdflatex paper
 bibtex paper
 pdflatex -interaction=batchmode paper
 pdflatex -interaction=batchmode paper
 open paper.pdf

rebuild:
 make clean
 make chapter1
 make chapter3
 make chapter4
 make chapter5
 make chapter6
 make build

clean:
 rm -f *~ *.aux *.bbl *.blg *.lo? *.toc
*.brf xbgf.tex

Software Languages

Programming languages

Functional languages

Declarative languages

Modelling languages

197 7 A C M T u r i n g A w a r d L e c t u r e

The 1977 ACM Turing Award was presented to John Backus
at the ACM Annual Conference in Seattle, October 17. In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the September
1977 issue of Communications, page 681.

"Probably there is nobody in the room who has not heard of
For t ran and most of you have probably used it at least once, or at
least looked over the shoulder of someone who was writing a For.
t ran program. There are probably almost as many people who
have heard the letters BNF but don' t necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation. These two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer field and both were made by John
Backus (which in the For t ran case also involved some col-
leagues). It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation is for 'profound, influential,
and lasting contributions to the design of practical high-level
programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.'

The most significant part of the full citation is as follows:
' . . . Backus headed a small IBM group in New York City

during the early 1950s. The earliest product of this group's
efforts was a high-level language for scientific and technical corn-

putations called Fortran. This same group designed the first
system to translate For t ran programs into machine language.
They employed novel optimizing techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on IBM machines, and later on virtu-
ally every make of computer. For t ran was adopted as a U.S.
national standard in 1966.

During the latter part of the 1950s, Backus served on the
international committees which developed Algol 58 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
ming languages. The formal notation became known as B N F -
standing for "Backus Normal Form," or "Backus Naur Form" to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. For t ran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.' "

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs
John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author's address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor- - the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978
of Volume 2 i
the ACM Number 8

build:
 pdflatex paper
 bibtex paper
 pdflatex -interaction=batchmode paper
 pdflatex -interaction=batchmode paper
 open paper.pdf

rebuild:
 make clean
 make chapter1
 make chapter3
 make chapter4
 make chapter5
 make chapter6
 make build

clean:
 rm -f *~ *.aux *.bbl *.blg *.lo? *.toc
*.brf xbgf.tex

http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png

http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png
http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png

Software Languages

Programming languages

Functional languages

Declarative languages

Modelling languages

Markup languages

…

197 7 A C M T u r i n g A w a r d L e c t u r e

The 1977 ACM Turing Award was presented to John Backus
at the ACM Annual Conference in Seattle, October 17. In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the September
1977 issue of Communications, page 681.

"Probably there is nobody in the room who has not heard of
For t ran and most of you have probably used it at least once, or at
least looked over the shoulder of someone who was writing a For.
t ran program. There are probably almost as many people who
have heard the letters BNF but don' t necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation. These two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer field and both were made by John
Backus (which in the For t ran case also involved some col-
leagues). It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation is for 'profound, influential,
and lasting contributions to the design of practical high-level
programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.'

The most significant part of the full citation is as follows:
' . . . Backus headed a small IBM group in New York City

during the early 1950s. The earliest product of this group's
efforts was a high-level language for scientific and technical corn-

putations called Fortran. This same group designed the first
system to translate For t ran programs into machine language.
They employed novel optimizing techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on IBM machines, and later on virtu-
ally every make of computer. For t ran was adopted as a U.S.
national standard in 1966.

During the latter part of the 1950s, Backus served on the
international committees which developed Algol 58 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
ming languages. The formal notation became known as B N F -
standing for "Backus Normal Form," or "Backus Naur Form" to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. For t ran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.' "

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs
John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author's address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor- - the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978
of Volume 2 i
the ACM Number 8

build:
 pdflatex paper
 bibtex paper
 pdflatex -interaction=batchmode paper
 pdflatex -interaction=batchmode paper
 open paper.pdf

rebuild:
 make clean
 make chapter1
 make chapter3
 make chapter4
 make chapter5
 make chapter6
 make build

clean:
 rm -f *~ *.aux *.bbl *.blg *.lo? *.toc
*.brf xbgf.tex

http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png

http://commons.wikimedia.org/wiki/File:XHTML.svg

http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png
http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png
http://commons.wikimedia.org/wiki/File:XHTML.svg
http://commons.wikimedia.org/wiki/File:XHTML.svg

Software Language Evolution

Language → next version

more features

backward compatibility

DSL → DSL

typically developed iteratively

feedback from client, performance, etc

Software Language Evolution

Language → language dialect

some features added, others blocked

possibly concrete syntax deviation

Language description → technology-specific one

esp. parsing techniques

Language → language replication

compatibility

Grammar (in a broad sense)

Definition of a software language

Commitment to structure

Di!erentiates between ‘correct’ and ‘incorrect’

Comes in various flavours

parser specs, metamodels, class diagrams,
(G)ADTs, XML schemata, ontologies, protocols,
APIs, documentation, …

A finite definition of a (possibly) infinite language

Grammar (in a broad sense)

Nonterminals (syntactic categories)

Terminals (atomic symbols)

Labels, markers, groups

Repetitions (?, +, *, seplists)

Disjunction (conjunction, negation)

…

Equivalence problem is undecideable

Grammar example (ADT)

Grammar example (ADT)

Function ::= [Function]::(Name Name* Expr);

Name ::= String;

Expr ::= [Literal]::Int
| [Argument]::Name
| [Binary]::(Ops Epr Expr)
| [IfThenElse]::(Expr Expr Expr)
| [Apply]::(Name Expr*);

Ops ::= [Equal]::ε | [Plus]::ε | [Minus]::ε;

Part II
Imperative View

Imperative view
on software language evolution

Grammar 1 Grammar 2

Imperative example

Imperative example

Imperative example

Imperative example

?
R. Lämmel, V. Zaytsev, Recovering Grammar Relationships for the Java Language Specification. SQJ, 2011.

http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23JLS-SQJ2011

Grammar di!erences

intended vs. accidental

result of grammar adaptation

result of grammar evolution

idiosyncrasies thanks to metanotation

idiosyncrasies thanks to parsing technology

presentation and understandability

misspelling

…etc

Part III
Declarative View

Declarative view
on software language evolution

Input G Output G

Transformation

Declarative view
on software language evolution

Input G

Transformation

Declarative view
on software language evolution

Transformation

Declarative example
expr : …;
atom : ID | INT | '(' expr ')';

expr : …;
atom : ID;
atom : INT;
atom : expr;

expr : …;
expr : ID;
expr : INT;
expr : expr;

expr : …;
expr : ID;
expr : INT;

expr : …;
atom : ID | INT | expr;

abstractize

vertical unite

abridge

R. Lämmel, V. Zaytsev, An Introduction to Grammar Convergence. IFM 2009, LNCS 5423.

http://grammarware.net/writes/%23Convergence2009
http://grammarware.net/writes/%23Convergence2009

31

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
◦ rename 9 4 2 9 10 — 2 36

◦ reroot 2 — — 2 2 2 1 9

◦ unfold 1 10 8 11 13 2 3 48

◦ fold 4 11 4 11 13 2 5 50

◦ inline 3 67 8 71 100 — 1 250

◦ extract — 17 5 18 30 — 5 75

◦ chain 1 — 2 — — 1 4 8

◦ massage 2 13 — 15 32 5 3 70

◦ distribute 3 4 2 3 6 — — 18

◦ factor 1 7 3 5 24 3 1 44

◦ deyaccify 2 20 — 25 33 4 3 87

◦ yaccify — — — — 1 — 1 2

◦ eliminate 1 8 1 14 22 — — 46

◦ introduce — 1 30 4 13 3 34 85

◦ import — — 2 — — — 1 3

◦ vertical 5 7 7 8 22 5 8 62

◦ horizontal 4 19 5 17 31 4 4 84

◦ add 1 14 13 7 20 28 20 103

◦ appear — 8 11 8 25 2 17 71

◦ widen 1 3 — 1 8 1 3 17

◦ upgrade — 8 — 14 20 2 2 46

◦ unite 18 2 — 18 21 5 4 68

◦ remove — 10 1 11 18 — 1 41

◦ disappear — 7 4 11 11 — — 33

◦ narrow — — 1 — 4 — — 5

◦ downgrade — 2 — 8 3 — — 13

◦ define — 6 — 4 9 1 6 26

◦ undefine — 3 — 5 3 — — 11

◦ redefine — 3 — 8 7 6 2 26

◦ inject — — — 2 4 — 1 7

◦ project — 1 — 1 2 — — 4

◦ replace 3 1 2 3 6 1 1 17

◦ unlabel — — — — — — 2 2

Table 7 XBGF operators usage for JLS convergence.

5.1 Grammar recovery

The main objective of the JLS study is to discover grammar relationships, but an “important

byproduct” of the study is a consolidated Java grammar. Hence, this particular instance of

grammar convergence (perhaps more than grammar convergence in general) relates strongly

to other efforts on grammar recovery. This topic has seen substantial interest over the last

10 years because of the need for grammars in various software engineering scenarios. We

categorize this work in the following.

Recovery option 1: Parser-based testing and improvement cycle

A by now classical approach to grammar recovery is to start from some sort of documen-

tation that contains a raw grammar, which can be extracted, and then to improve the raw

grammar through parser-based testing until all sources of interest can be parsed (such as test

programs, or entire software projects) (Sellink and Verhoef, 2000; Lämmel and Verhoef,

2001a,b; de Jonge and Monajemi, 2001; Alves and Visser, 2009). The actual improvement

steps may be carried out manually (Sellink and Verhoef, 2000; de Jonge and Monajemi,

Grammar mutations

distribute ⊢ DistributeAll

eliminate ⊢ EliminateTop

concatT ⊢ ConcatAllT

inline ⊢ InlineLazy

renameN ⊢ RenameNUpperDash2CamelNone

define ⊢ DefineAll([pi])

V. Zaytsev, Software Language Engineering by Intentional Rewriting. SQM 2014.

http://grammarware.net/writes/%23SLEIR2014
http://grammarware.net/writes/%23SLEIR2014

Part IV
Imperative vs Declarative

Imperative View on Evolution

Easy to use

no extra e!ort required

no additional languages involved

No intention tracked

what actually changed?

what changed conceptually?

why was it changed?

Declarative View on Evolution

Hard to use

tedious to specify each change

need to learn/develop a new language

Transformations are first class entities

can be saved, documented, reused, rerun

can be inspected without execution

can be transformed on its own

Bridging/mapping

Both approaches have (dis)advantages

Declarative → imperative

easy, if the input is given

Imperative → declarative

need a special ‘grammar di!er’

Equality-based di!er

Equivalence as equality

Nominal di!erences

A ::= X Y Z; B ::= X Y Z;

Structural di!erences

A ::= X Y Z; A ::= X Z;

Deliberately limited comparator is useful

Hamming-based di!er

Resolves structural di!erences

Seeks/counts required substitutions

Yields good results if the transformation suite is

replace

R. W. Hamming, “Error Detecting And Error Correcting Codes”,
Bell System Technical Journal 29 (2): 147–160, MR 0035935. 1950.

Levenshtein-based di!er

Resolves structural di!erences

Seeks/counts required single-symbol edits

Yields good results if the transformation suite is

replace

permute

inject, project
V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and Reversals,”

Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966.

Convergence-based di!er

‘Cheats’ on undecidability by involving a human

Do a stupid comparison

Report a mismatch

Let a human encode it as transformation

…in a possibly sophisticated framework

Repeat until equal/equivalent

R. Lämmel, V. Zaytsev, An Introduction to Grammar Convergence. IFM 2009, LNCS 5423.

http://grammarware.net/writes/%23Convergence2009
http://grammarware.net/writes/%23Convergence2009

Grammar convergence
source

grammar
source

grammar

target
grammar

grammar
transformation

grammar
transformation

source
grammar

source
grammar

bidirectional
grammar

transformation

= relationship

ΞBGF

XBGF

V. Zaytsev, Language Evolution, Metasyntactically. EC-EASST 49, 2012.

http://grammarware.net/writes/%23Metasyntactically2012
http://grammarware.net/writes/%23Metasyntactically2012

Signature-based di!er

Heuristic-based human emulator

Powerful enough for typical local changes

Case study with 11 grammars:

Rascal ADT, ANTLR spec, Prolog DCG, Ecore EMF,
JAXB model, Java object model, Rascal syntax def,
Python parser, SDF def, TXL def, XML schema

V. Zaytsev, Guided Grammar Convergence. SLE Poster, CEUR, 2013.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

• extract-inline in FLExpr

p (‘’,FLExpr1 , seq ([FLExpr ,FLOp,FLExpr]))

• extract-inline in FLExpr

p (‘’,FLExpr2 , seq ([str, ∗(FLExpr)]))

• extract-inline in FLExpr

p (‘’,FLExpr3 , seq ([FLExpr ,FLExpr ,FLExpr]))

7.3 Grammar in ANF
Production rule Production signature

p (‘’,FLPrg, ∗(FLFun)) {�FLFun, ∗�}
p (‘’,FLFun, seq ([str, ∗(str) ,FLExpr])) {�str, 1∗�, �FLExpr , 1�}
p (‘’,FLExpr ,FLExpr1) {�FLExpr1 , 1�}
p (‘’,FLExpr ,FLExpr2) {�FLExpr2 , 1�}
p (‘’,FLExpr ,FLExpr3) {�FLExpr3 , 1�}
p (‘’,FLExpr , str) {�str, 1�}
p (‘’,FLExpr , int) {�int, 1�}
p (‘’,FLExpr1 , seq ([FLExpr ,FLOp,FLExpr])) {�FLOp, 1�, �FLExpr , 11�}
p (‘’,FLExpr2 , seq ([str, ∗(FLExpr)])) {�str, 1�, �FLExpr , ∗�}
p (‘’,FLExpr3 , seq ([FLExpr ,FLExpr ,FLExpr])) {�FLExpr , 111�}

7.4 Nominal resolution
Production rules are matched as follows (ANF on the left, master grammar on the right):

p (‘’,FLPrg, ∗(FLFun)) � p (‘’, program,+(function))

p (‘’,FLFun, seq ([str, ∗(str) ,FLExpr])) � p (‘’, function, seq ([str,+(str) , expression]))

p (‘’,FLExpr ,FLExpr1) � p (‘’, expression, binary)

p (‘’,FLExpr ,FLExpr2) � p (‘’, expression, apply)

p (‘’,FLExpr ,FLExpr3) � p (‘’, expression, conditional)

p (‘’,FLExpr , str) � p (‘’, expression, str)

p (‘’,FLExpr , int) � p (‘’, expression, int)

p (‘’,FLExpr1 , seq ([FLExpr ,FLOp,FLExpr])) � p (‘’, binary, seq ([expression, operator , expression]))

p (‘’,FLExpr2 , seq ([str, ∗(FLExpr)])) � p (‘’, apply, seq ([str,+(expression)]))

p (‘’,FLExpr3 , seq ([FLExpr ,FLExpr ,FLExpr])) � p (‘’, conditional , seq ([expression, expression, expression]))

This yields the following nominal mapping:

rascal − a � master = {�FLFun, function�,
�FLExpr2 , apply�,
�FLPrg, program�,
�FLExpr , expression�,
�int, int�,
�str, str�,
�FLExpr3 , conditional�,
�FLOp, operator�,
�FLExpr1 , binary�}

Which is exercised with these grammar transformation steps:

• renameN-renameN FLFun to function

• renameN-renameN FLExpr2 to apply

• renameN-renameN FLPrg to program

• renameN-renameN FLExpr to expression

• renameN-renameN FLExpr3 to conditional

28

V. Zaytsev, Guided Grammar Convergence. arXiv:1207.6541v1 [cs.PL]. 2012.

http://grammarware.net/writes/%23Guided2012
http://grammarware.net/writes/%23Guided2012

Acceptance-based di!er

Take recognisers of di!erent nonterminals

If they accept the same language,

assume them equivalent

Easily generalisable for partial matches

B. Fischer, R. Lämmel, V. Zaytsev, Comparison of Context-free Grammars Based on Parsing
Generated Test Data SLE 2011, LNCS 6940. 2012

http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012

Acceptance-based di!er
1 0

1 0

1 0

1 0

1 1 0

1 0 1 0

1 0 0 1 0

1 0 0 0 1 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 0

1 0 1 1 0 0 0 0

1 0

B. Fischer, R. Lämmel, V. Zaytsev, Comparison of Context-free Grammars Based on Parsing
Generated Test Data SLE 2011, LNCS 6940. 2012

http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012

Conclusion

Based on several years of published research

and several years of hacking
(Rascal, Prolog, Python, Haskell, XSLT, …)

Made at CWI (Centrum Wiskunde & Informatica)

Also presented as a tutorial at MoDELS 2013

http://grammarware.github.io/lab

http://grammarware.github.io/lab/
http://grammarware.github.io/lab/

Imperative vs Declarative

Evolution is a thing

Imperative is easy and weak

Declarative is complex and powerful

Ideally, we want easy + support

various approaches

Vadim Zaytsev, http://grammarware.net

Questions?

Imperative

http://grammarware.net
http://grammarware.net

