
Keeping the PilGRIM at a steady pace
Avoiding pipeline stalls in a lazy functional processor

Arjan Boeijink

University of Twente
Enschede

NL-FP dag 2014

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 1 / 19

PilGRIM introduction

Pipelined Graph Reduction Instruction Machine

A processor specialized for lazy functional languages

Executes Instruction set that is close FP core language

Deep pipeline (about 10 stages) for competitive performance

High level stack based instruction set working on wide data

Moving a lot of data in parallel but only locally

Use extra available transistors for runtime optimizations

Why design a processor for lazy functional languages again?

Exploring 20 years of alternative history in hardware

Can overhead of FP be eliminated by using extra hardware?

Functional languages are a difficult workload for current processors

Hardware technology changes slowing down gives time to catch up

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 2 / 19

The instruction set of the PilGRIM

Derived from GRIN (Graph Reduction Intermediate Notation)

High level instructions with builtin support for eval, apply and case

Modified with focus on parallelism within a single instruction

PilGRIM instructions work on whole nodes

Nodes are: Constructors, Functions and Partially applied functions

Each node has tag/header word for all meta data and
a sequence of either references or unboxed primitives

Whole nodes are moved between stack and heap at once

Instruction format (store/return)

instruction node tag node arguments stack cleanup

Store Ffoldr f z xs optional
Return CPair x y pop mask

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 3 / 19

Functional language support and example

Call-like instructions are combinations of three aspects

control part what is called ’application’ stack cleanup

Call Eval x Apply ~a
...

Jump function ~x Select n pop mask

Case [jump table] Receive ()
...

foldr expressed in 4 PilGRIM instructions

foldr f a ys =
Case [nil , cons] (Eval ys) ()

CNil →
Jump (Eval a) ()

CCons x xs →
rs ← Store (Ffoldr f a xs)
Jump (Eval f) (Apply x rs)

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 4 / 19

Overview of a simplified architecture

heap memory

allocation heap

load unit store unit

tagtag top of stack

tagtag node stack
application

stack
update
stack

return
stack

shuffle

re
f.

q
u

eu
e

pr
im

.
q

u
eu

e

ALU

control

code
memory

whole node

2–4 words

1 word

stackgeneral stack

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 5 / 19

Splitting the stack

heap memory

allocation heap

load unit store unit

tagtag top of stack

tagtag node stack
application

stack
update
stack

return
stack

shuffle

re
f.

q
u

eu
e

pr
im

.
q

u
eu

e

ALU

control

code
memory

whole node

2–4 words

1 word

stackgeneral stack

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 6 / 19

Queues for temporary references and primitive values

heap memory

allocation heap

load unit store unit

tagtag top of stack

tagtag node stack
application

stack
update
stack

return
stack

shuffle

re
f.

q
u

eu
e

pr
im

.
q

u
eu

e

ALU

control

code
memory

whole node

2–4 words

1 word

stackgeneral stack

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 7 / 19

Adding the allocation heap and top of the stack

heap memory

allocation heap

load unit store unit

tagtag top of stack

tagtag node stack
application

stack
update
stack

return
stack

shuffle

re
f.

q
u

eu
e

pr
im

.
q

u
eu

e

ALU

control

code
memory

whole node

2–4 words

1 word

stackgeneral stack

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 8 / 19

Executing a Return instruction

heap memory

allocation heap

load unit store unit

tagtag top of stack

tagtag node stack
application

stack
update
stack

return
stack

shuffle

re
f.

q
u

eu
e

pr
im

.
q

u
eu

e

ALU

control

code
memory

whole node

2–4 words

1 word

stackgeneral stack

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 9 / 19

Pipelining in the PilGRIM

Reasons for pipelining

Wide instructions doing 10x the work is not enough

Need ∼1Ghz frequency to be competitive

Trying to address latency related bottlenecks

Exploring what makes FP code tricky to execute

Simplified pipeline structure

Instr Cache
Instr
Dec

Rename Issue Reg reads/Crossbar

Alu

Local heap
Memory Tag

check

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 10 / 19

The problem of keeping a steady pace

Lazy functional languages stress bottlenecks

Very memory intensive due to immutable data

Loading a node from the heap has implicit control flow

About 40% of all PilGRIM instructions contain control flow

Executing a simple case expression

load node from heap tag?

branch to function

branch to case alt

execute function

execute case alt.

Need to wait on load result to determine next instruction to fetch

Can start next load only after instructions are fetched and decoded

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 11 / 19

Keeping more data local

Allocation heap

Local memory that supports a node load or store every cycle

Can be viewed as a fast tagless first level cache

Reducing bandwidth requirement for the other caches

Local reference counting

Each allocation heap entry has a reference counter

Acts as garbage collection filter for short lived data

Avoid polluting the cache with temporary data

Also reduces frequency of real garbage collection

Uniqueness bit on each reference

Allows for destructive reads from heap

Marking reference shared is a cheap local operation

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 12 / 19

Making decisions while waiting on a load

Pointer tagging extreme

Exploiting the abundance of bits in a 64 bit architecture

Every reference is split into 16 bits of meta data and a 48 bit pointer

The pointer tag contains information about of the stored node

Hardware support allows pointer tagging without overhead

Faster case expressions with pointer tagging

If the pointer tag has known constructor information
the jump the right case alternative can be made early

Load node data and the code for case alternative concurrently

Storing some nodes only in the reference

Constructors of enumeration like data types

Dynamicly storing small boxed Ints in the reference

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 13 / 19

Reducing delay on evaluation of thunks

Eval target buffer for function references

While waiting on function node load use pointer tag

Prediction of which function will do the evaluation

Put a small hash of the function address into the pointer tag

Eval target buffer contains a few (predecoded) instructions

Start executing function right after load on correct prediction

tag pointer

F #

fun addr dec. instr instr2 instr3

eval target buffer

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 14 / 19

Starting loads without waiting for the instruction

Most functions start with fetching one of the arguments

But have to wait for the instruction with the load in the function

Solution is storing argument index of next fetch in header

Can start load while waiting for instructions of this function

F map {e:2} f xs

F foldr {e:3} f z ys

Can use similar trick for case alternatives

Add a few bits for next fetch in case jump table:

f o l d l f z xs = c a s e xs o f
N i l {e : } −> z
Cons y ys {e : 2} −> f o l d l f (f z y) ys

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 15 / 19

Starting known loads early

Prefetching know loads

Compiler often know which references will be loaded

Could insert prefetch instructions but can be too aggressive

Problem is that function calls could take a long time

Using the ’application’ part of instructions

Queue on stack the next load after a eval/function call

Now can start loads early when they are needed soon

And does not increase number of instructions

Example for the function addInt x y is:

CInt a← Call (Eval x) (ThenFetch y)
CInt b ← Call (EvalFetched x) ()
c ← PrimOp + a b

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 16 / 19

Open problems

Are these trick enough to keep the pipeline filled?

Unfornately need finished hardware design to tell you

Can the instruction cache deliver enough instructions?

Might need to use multithreading to keep the core busy

Dealing with conditional branches

A branch disrupts most pipelining stall avoiding tricks

Might fetch and decode both branches at the same time

Internal state too complex for using speculative execution

Convert some branches in conditional or select instructions

Combining nested if expressions into case like construct

Eager execution of functions with branches outside the critical path

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 17 / 19

Conclusions

Can avoid most pipeline stalls with a lot of effort

Combining common control flow in high level instruction set

Design memory system for keeping useful data local

Pointer tagging for avoiding dependencies on loads

Can start many loads early by extra annotations

Stalls still happen but something useful is done at same time

Future work

Implement all these idea in cycle accurate simulation

Produce synthesizable hardware from it (for FPGA?)

Run bigger and complex programs to find the next bottleneck

Compiler optimizations to reduce amount of control flow

Multithreaded core to deal with external memory latencies?

In the long term built multicore variant of the architecture

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 18 / 19

Thank you

Questions?

Advertisement:

Master assignment available on compiler optimizations for PilGRIM

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 19 / 19

Thank you

Questions?

Advertisement:

Master assignment available on compiler optimizations for PilGRIM

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 19 / 19

How can specialized hardware support improve
performance of lazy functional languages?

Major improvements:

Reading/writing of whole nodes from/to the heap at once

Using the stack without load and store instructions

Parallel movements of data between all the stacks

Keeping more data local by reference counting

Minor improvements:

Hardware supported call/return instructions

Extensive pointer tagging scheme without any overhead

Hardware support for evaluation/updating/application

Heap and stack checks are done in hardware

Cache behaviour tuned for functional programs

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 20 / 19

Comparing the PilGRIM with the Reduceron

PilGRIM:

deeply pipelined design

silicon targeted

high clockspeed is as
important as parallelism

GRIN derived instruction set

trying to benefit from GHC’s
optimizations

data types/case expr.
hardware supported

Reduceron:

single cycle reduction step

designed for a FPGA

focus on exploiting memory
parallelism

template instantiation

focus on dynamic runtime
optimizations

data types/case expr.
encoded in function

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 21 / 19

Memory hierarchy and reference counters

level 1two wayassociativecode cache

computational core

external memory interface
heap management

stackbuffers

allocation heap
level 1four wayassociativedata cache refer-encecount-ers

sequencer load/store unit
stacks

Arjan Boeijink (University of Twente) Keeping the PilGRIM at a steady pace NL-FP 2014 22 / 19

