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This paper describes how automated deduction methods for
natural language processing can be applied more efficiently by
encoding context in a more elaborate way. Our work is based
on formal approaches to context, and we provide a tableau cal-
culus for contextual reasoning. This is explained by consider-
ing an example from the problem area of presupposition pro-
jection.

Introduction
The notion of context plays an important role in formal the-
ories of natural language processing (NLP), one of the ma-
jor subareas of Artificial Intelligence. Several definitions of
context have been used in computational linguistics, depend-
ing on the application. Amongst others, context has been
used for resolving lexical ambiguity (Buvač 1996), pronoun
resolution (Monz & de Rijke 1999), and presupposition pro-
jection (Karttunen 1974). In this paper, we focus on the last
application.

Before we go into detail, we give a rough definition of pre-
supposition. We say that an utterance ϕ presupposes a fact
π, if uttering ϕ only makes sense if the context (e.g., world
knowledge or earlier utterances in the same conversation)
provides enough information to conclude that π is the case.
Consider an example.

(1)a. Sue’s husband is out of town.
b. If Sue is married, then her husband is out of town.

Presupposition triggers like Sue’s husband are resolved
against their local context. If this context provides the
presupposed information, then the presupposition does not
project. If, on the other hand, the local context does not pro-
vide the presupposed information, it does project.

As to the explicit representation of context itself, we try to
keep things as simple as possible and identify a context with
a set of first-order formulas.

There are many formal theories in Linguistics that de-
scribe presupposition projection by using context, e.g. (Kart-
tunen 1974), but only a few NLP systems computing presup-
positions have been actually implemented, see, e.g., DORIS
(Blackburn et al. 1999). To compute the presuppositions
which project, it is necessary to employ automated reason-
ing techniques, where, as we said before, a presupposition

π does not project if it can be deduced from its local con-
text. Computing presupposition projection involves both
concepts: context and reasoning.

If a semantic representation of a natural language dis-
course contains the presuppositions π1 ��������� πn, where
Γ1 ��������� Γn are the corresponding local contexts (sets of
first-order formulas), then the most straightforward way
to compute the projected presuppositions is by having run
a theorem prover on the queries (or projection problems)
Γ1

�
π1 ��������� Γn

�
πn. Its major shortcoming is that deduc-

tions are carried out independently of each other. But, often
it is the case that the contexts Γ1 ��������� Γn share formulas.
Then, some deduction steps are carried out several times,
causing a decrease of efficiency.

To avoid redundant treatment of subcontexts, we need a
richer language that enables us to express nesting of contexts.
Here, we use the �	� -predicate, cf. (Attardi & Simi 1994a;
1994b), which takes two arguments. The first argument is a
set of formulas and the second is a formula. �	��
 Γ � ϕ � is true
if Γ

�
ϕ.1 Since ϕ itself can contain an �	� -predicate, we are

able to nest contexts. E.g., �	�

 Γ � ϕ ���	��
 ∆ � ψ ��� is true if Γ
�

ϕ
and Γ � ∆

�
ψ. In this case ∆ is a local context for ψ.

A language containing the ��� -predicate functions like a
meta-language of reasoning. In the sequel, we give a tableau
calculus for such a language.

Presupposition and Context
A particular instance of the presupposition projection prob-
lem was given in (1). Here, the noun phrase Sue’s husband
carries the presupposition Sue is married. In general, fol-
lowing (Blamey 1986), we use an additional connective π � ϕ,
meaning that ϕ presupposes π.

Definition 1 (The Language � pre) To indicate the presup-
positions of a formula, the language of first-order predicate
logic � is augmented with a binary presupposition connec-
tive ‘/’. Its left argument is a first-order formula and its right
argument a formula of � pre.

ϕ :: � R � t1 ����� tn ����� ϕ � ϕ � ψ � ϕ � ψ � ϕ � ψ��� xϕ �� xϕ � π ! ϕ
1We slightly diverge from (Attardi & Simi 1994a; 1994b) where

the argument positions of "$# are interchanged, i.e., "$#%� ϕ & Γ � means
that ϕ can be deduced from Γ.



where π '(� .

The set of contexts ) is identified with the finite subsets
of � .

Above, we sketched how the projected presupposition of
(1) can be computed. (Karttunen 1974) defines a function*,+.-0/ accomplishing this task.

Definition 2 (Presupposition) The function *,+1-�/ is defined
recursively. It takes two arguments: A formula of � pre and a
context Γ '2) , *,+1-�/ : � pre 3 )54 POW 
6�7� .� i �980:1;=< � ϕ � Γ � /0 if ϕ is atomic� ii �980:1;=< � � ϕ � Γ � 8$:.;>< � ϕ � Γ� iii �980:1;=< � ϕ � ψ � Γ � 8$:.;>< � ϕ � Γ ? 8$:.;>< � ψ � Γ @BADC�E6F ϕ G.H� iv �I80:1;=< � ϕ � ψ � Γ � 8$:.;>< � ϕ � Γ ? 8$:.;>< � ψ � Γ @BADC�E6F ϕ G.H� v �I80:1;=< � ϕ � ψ � Γ � 8$:.;>< � ϕ � Γ ? 8$:.;>< � ψ � Γ @BADC�E6FKJ ϕ G1H� vi �I80:1;=< � � xϕ � Γ � 8$:.;>< � ϕ � Γ� vii �980:1;=< �  xϕ � Γ � 8$:.;>< � ϕ � Γ� viii �980:1;=< � π ! ϕ � Γ � L 80:1;=< � ϕ � Γ ?NM π O if Γ PQ π80:1;=< � ϕ � Γ if Γ

Q
π

The last rule is the one we want to focus on this paper, be-
cause it involves contextual reasoning.

The function R / returns the assertive content of a formula
of � pre, cf. (Karttunen & Peters 1979). Roughly speaking,
the assertive part of a formula ϕ 'S� pre is obtained by sub-
stituting all subformulas of the form π � ψ by ψ. The assertive
part can be recursively computed by applying the function as
to ϕ.

Definition 3 (Assertive Content) R / is a function from � inc

to � : T < � R � t1 ����� tn ��� � R � t1 �D��� tn �T < � � ϕ � � � T < � ϕ �T < � ϕ U ψ � � T < � ϕ � U T < � ψ � , where UWV M �X&Y�Z&Y��OT < � π ! ϕ � � T < � ϕ �T < �\[ xϕ � �][ x

T < � ϕ � , where [^V M � &  O
Let us consider an example. (2) displays an admittedly

quite artificial discourse, but we hope that it illustrates the
point.

(2)a. John is married. (ϕ)
b. If John’s wife has a brother, then John hasn’t met

his brother-in-law, yet. (ϕ � ψ 4_
 ϕ � ψ �>� χ)
c. John’s wife has quite a few relatives. (ϕ � ω)

The semantic representations of the three sentences are dis-
played in parentheses after each sentence and the presuppo-
sition triggers are underlined.

Applying *,+.-0/ to the whole discourse (the conjunction of
(2.a), (2.b), and (2.c)), it correctly computes that no presup-
position projects:80:1;=< � ϕ �`��� ϕ ! ψ �a� ϕ � ψ � ! χ � � ϕ ! ω ��� /0 � /0

To see why this is the case, let us have a closer look at the way*,+.-0/ recursively computes the presuppositions. The contex-
tual parameter of *,+1-�/ is initialized to /0, as there is no further
context preceding (2).

8$:.;>< � ϕ �`��� ϕ ! ψ �b� ϕ � ψ � ! χ � � ϕ ! ω ��� /0� 80:1;=< � ϕ � /0 ? 8$:.;>< ��� ϕ ! ψ �a� ϕ � ψ � ! χ � � ϕ ! ω � A ϕ H by � iii �� 80:1;=< �D� ϕ ! ψ �a� ϕ � ψ � ! χ � � ϕ ! ω � A ϕ H by � i �� 80:1;=< �D� ϕ ! ψ �a� ϕ � ψ � ! χ ��� A ϕ H%? 80:1;=< � ϕ ! ω � A ϕ c ψ H by � iii �� 80:1;=< � ϕ ! ψ � A ϕ H ? 80:1;=< ��� ϕ � ψ � ! χ ��� A ϕ c ψ H? 80:1;=< � ϕ ! ω � A ϕ c ψ d χ H by � iv �� 80:1;=< �D� ϕ � ψ � ! χ ��� A ϕ c ψ H%? 80:1;=< � ϕ ! ω � A ϕ c ψ d χ H by � viii �
where 80:1;=< � ϕ ! ψ � A ϕ H � /0 because M ϕ O Q ϕ� 80:1;=< � ϕ ! ω � A ϕ c ψ d χ H by � viii �
where 80:1;=< ��� ϕ � ψ � ! χ � A ϕ c ψ H � /0 because M ϕ & ψ O Q ϕ � ψ� /0 by � viii �
where 80:1;=< � ϕ ! ω � A ϕ c ψ d χ H � /0 because M ϕ & ψ � χ O Q ϕ

The

application of *,+.-0/ to (2) involves three inferences: e ϕ f � ϕ,e ϕ � ψ f � ϕ � ψ, and e ϕ � ψ 4 χ f � ϕ. Here, the premise
ϕ is used three times and the proving method has to apply
the same set of rules three times to the same formula. As
we mentioned earlier, this is due to the fact that the con-
texts (premises) are considered to be independent of each
other. From a computational point of view, this redundancy
is rather inefficient. Of course, the example is very simple,
but in general, ϕ could have been arbitrarily complex. In (2),
the sentences containing presuppositions, (2.b) and (2.c), oc-
cur in a context consisting of one sentence, viz. (2.a), but it
could have been a much larger context.

This reasoning task can be done more efficiently if we take
the flow of contextual information into account; i.e., the way
contexts are nested. To express nesting of contexts we use a
language containing the �	� -predicate:

Definition 4 (The Language � con) � con is defined recur-
sively as follows, where Γ 'g) :

ϕ :: � R � t1 ����� tn ����� ϕ � ϕ � ψ � ϕ � ψ � ϕ � ψ��� xϕ �� xϕ � "h#%� Γ & ϕ ����i
We do not use � con to express the semantics of a natural

language discourse, but only for expressing which presup-
position triggers have to be evaluated against which context.
The purpose of � con is to express these projection problems
in a non-redundant fashion.

Let us reconsider example (2). The antecedent of (2.b)
contains the presupposition, that John is married, formal-
ized as ϕ. The context of this presupposition only consists
of (2.a), also formalized as ϕ. This projection problem can
be stated in � con as �	�

je ϕ f � ϕ � . The presupposition of the
succedent of (2.b), i.e., John is married and that his wife has
a brother, formalized as ϕ � ψ is evaluated against (2.a) and
the antecedent of (2.b): �	��
\e ϕ � ψ f � ϕ � ψ � . The two projec-
tion problems can be compactly expressed by a single for-
mula of � con: ���

je ϕ f � ϕ �k�	��
\e ψ f � ϕ � ψ ��� . The second �	� -
predicate is nested under a context where ϕ already holds,
and it is not necessary to express again that ϕ holds. The
last sentence, (2.c), again presupposes ϕ. Its context is (2.a)
and(2.b), therefore, �	��
je ϕ � ψ 4 χ f � ϕ � has to hold. Putting
the three projection problems together, we get
(3) �	�

je ϕ f � ϕ �l�	�m
\e ψ f � ϕ � ψ �n�S�	�o
je ψ 4 χ f � ϕ ���
Note, that we did not embed the third �	� -predicate in the sec-
ond ��� -predicate, yielding



(4) �	��
\e ϕ f � ϕ �S����
je ψ f � ϕ � ψ �S�	�m
je ψ 4 χ f � ϕ �����
This is not possible because ψ is a local assumption (context)
only accessible within the conditional.

The obvious question is how we get from a semantic rep-
resentation in � pre to a description of the projection problems
in � con. To this end, we define a translation function τ which
takes two arguments: a formula of � pre and a context. Before
we can give the formal definition of τ, we have to define how
the potential presuppositions of a formula can be computed.

Definition 5 (Potential Presupposition) The potential pre-
supposition of a formula ϕ '�� inc are all formulas π 'p� that
occur as subformulas of ϕ of the form π � ψ.8B8 � R � t1 ����� tn ��� � /08B8 � � ϕ � � 8B8 � ϕ �8B8 � ϕ U ψ � � 8B8 � ϕ � ? 8B8 � ψ � if UWV M �X&Y�Z&Y��O8B8 � π ! ϕ � � 8B8 � ϕ � ?NM π O8B8 �\[ xϕ � � 8B8 � ϕ � if [^V M � &  O*n* simply collects all presuppositions without checking
whether they are entailed by there local context.

Now, we can define a translation τ from � pre to � con. The
function τ is defined in Table 1. Since it is rather complex and
we have only limited space, we just try to sketch its rationale.
τ is defined recursively, taking two parameters: a formula of� pre and a context Γ.

τ : q pre rts �uq con

R � t1 ����� tn � τ c Γ � i � 1 �� � ϕ � τ c Γ � L � ϕ � τ c Γ if 8B8 � ϕ � P� /0 � 2a �i if 8B8 � ϕ � � /0 � 2b �� ϕ U ψ � τ c Γ�wvx y "$#z� Γ &j� ϕ � τ c /0 �`� ψ � τ c ADC�E{F ϕ G.H � if 8B8 � ϕ � P� /0 & Γ P� /0 � 3a �� ϕ � τ c /0 �`� ψ � τ c A|C�EYF ϕ G1H if 8B8 � ϕ � P� /0 & Γ � /0 � 3b �� ψ � τ c Γ @BA ϕ H if 8B8 � ϕ � � /0 � 3c �
where U}V M �X&Y�~O� ϕ � ψ � τ c Γ� vx y "$#z� Γ &j� ϕ � τ c /0 �`� ψ � τ c ADC�E{F�J ϕ G.H � if 8B8 � ϕ � P� /0 & Γ P� /0 � 4a �� ϕ � τ c /0 �`� ψ � τ c A|C�EYFKJ ϕ G1H if 8B8 � ϕ � P� /0 & Γ � /0 � 4b �� ψ � τ c Γ @BADJ ϕ H if 8B8 � ϕ � � /0 � 4c �
� π ! ϕ � τ c Γ � v��x ��

y "h#%� Γ & π �`� ϕ � τ c /0 � if 8B8 � ϕ � P� /0 & Γ P� /0 � 5a �
π �`� ϕ � τ c /0 if 8B8 � ϕ � P� /0 & Γ � /0 � 5b �"h#%� Γ & π � if 8B8 � ϕ � � /0 & Γ P� /0 � 5c �
π if 8B8 � ϕ � � /0 & Γ � /0 � 5d �

�\[ xϕ � τ c Γ � vx y "h#%� Γ &�[ x � ϕ � τ c /0 � if 8B8 � ϕ � P� /0 & Γ P� /0 � 6a �[ x � ϕ � τ c Γ if 8B8 � ϕ � P� /0 & Γ � /0 � 6b �i if 8B8 � ϕ � � /0 � 6c �
where [^V M � &  O

Table 1: Translating from � pre to � con

Let χ be in � pre. If the main operator is unary and χ con-
tains potential presuppositions, then we proceed with trans-
lating the immediate subformula of χ. If χ is of the form ϕ �

ψ, we check whether ϕ contains potential presuppositions.
If this is the case, χ translates as �	�

 Γ � 
 ϕ � τ � /0 ��
 ψ � τ � �jC�EY� ϕ �.� � .
The first argument of ��� is the context and 
 ϕ � τ � /0 gets /0 as
the context, because the translation of ϕ will be embedded
in Γ by the ��� -predicate. Similarly for 
 ψ � τ � �jC�EY� ϕ �.� , but here
the context is augmented by the assertive content of ϕ, which
was not available for ϕ itself. No �	� -predicate is introduced
if the context parameter is empty. Note that the way how con-
texts are augmented, see, for instance, 
 ψ � τ � �jC�E|� ϕ �6� , follows
the definition of *,+.-0/ .

Reconsidering (2), the translation of its semantic represen-
tation in � pre

ϕ �S
�
 ϕ � ψ 4�
 ϕ � ψ �>� χ ��� ϕ � ω �
proceeds as follows:� ϕ �`�D� ϕ ! ψ ��� ϕ � ψ � ! χ � � ϕ ! ω �D� τ c /0

by � 3c � :� ��� ϕ ! ψ �b� ϕ � ψ � ! χ � � ϕ ! ω � τ c A ϕ H
by � 3a � :� "$#�� M ϕ O	&j� ϕ ! ψ �b� ϕ � ψ � ! χ � τ c /0 �`� ϕ ! ω � τ c A ψ d χ H �
by � 3b � :� "$#�� M ϕ O	&j� ϕ ! ψ � τ c /0 �`��� ϕ � ψ � ! χ � τ c A χ H �`� ϕ ! ω � τ c A ψ d χ H �
by � 5d � :� "$#�� M ϕ O	& ϕ �`��� ϕ � ψ � ! χ � τ c A χ H �`� ϕ ! ω � τ c A ψ d χ H �
by � 5c � :� "$#�� M ϕ O	& ϕ �N"$#�� M χ O�& ϕ � ψ � �`� ϕ ! ω � τ c A ψ d χ H �
by � 5c � :� "$#�� M ϕ O	& ϕ �N"$#�� M χ O�& ϕ � ψ � �N"$#m� M ψ � χ O	& ϕ ���
Now we have defined an algorithmic way to state a pre-

supposition projection problem in a compact way by translat-
ing it to � con. The main advantage of expressing projection
problems in � con is that it allows for a more efficient way of
reasoning; see below.

Contextual Reasoning
In the previous section, we have seen how translating from� pro to � con can help stating presupposition projection prob-
lems in a compact way. In this section, we provide a tableau
calculus for the language � con. If ϕ '�� con is valid, then all
presuppositions are entailed by their local context and none
of them projects.

The most important rule of our tableau calculus � con is the
rule 
D������� . Before we introduce the other rules, it is helpful
to have a closer look at 
|���	��� , in order to understand the way
context is represented in � con.� i & σ � : � "$#%� M ϕ1 & �D��� & ϕn O	& ψ �� j & σ ?XM i O � :ϕ1

FKJB�|��G
...� j & σ ?XM i O � :ϕn� j & σ ?XM i O � : � ψ

To keep track of the contextual information, labels are at-
tached to the nodes in the tableau. A label has two argu-
ments. Its first argument i is a natural number (i ' IN), which
is the identifier of the context. I.e., if two nodes have the
same number as the first argument of their labels, then they
belong to the same context.



The second argument σ is a set of natural numbers. This
set contains the identifiers of the contexts that are accessi-
ble. We say that a context Γ is accessible from a formula ψ,
if there is a formula of the form �	��
 Γ � ϕ � and ψ is a subfor-
mula of ϕ. For instance, considering the formula �	�

 Γ � ϕ ��	��
 ∆ � ψ ��� , Γ is accessible from ϕ and �	��
 ∆ � ψ � . Also ∆ is ac-
cessible from ψ. Since accessibility is transitive, it holds that
Γ is accessible from ψ; but ∆ is not accessible from ϕ.

The ( ���	� )-rule is similar to the upwards direction (enter-
ing a context) of the (CS)-rule in (Buvač & Mason 1993):�

κ̄ � κ1 ϕ�
κ̄ �n����
 κ1 � ϕ � � CS �

κ̄ represents a sequence of contexts and the upwards direc-
tion of the rule says that if it is true in the context κ̄ that ϕ
holds in the extension with κ1, then ϕ holds in the context
κ̄ � κ1 itself.

Comparing (CS) to 
D�����z� , we can say that κ̄ corresponds
to σ �Se i f and j, the identifier of the context extension withe ϕ1 �������n� ϕn � � ψ f , corresponds to κ1.

Table 2 gives the complete set of tableau rules. Besides
the rules for the �	� -predicate, it contains the usual rule for
the boolean connectives and quantifiers. � is a meta-variable
over labels of the form 
 i � σ � . As the expansion rules for
the regular logical connectives do not change the contextual
information, the label of the parent and the label(s) of the
daughter(s) are identified.

The contextual information carried by the labels becomes
important when we want to define the closure conditions of
a branch.

Definition 6 (Closure of a Branch) A branch of a tableau
tree is closed if it contains two nodes of the form 
 i � σ � : ϕ
and 
 j � σ �1� : � ψ such that

(a) ϕ and ψ are unifiable, and
(b) (i) i � j or (ii) i ' σ � or (iii) j ' σ

(a) is the standard condition on branch closure. (b) consid-
ers three cases. If i � j, then both literals belong to the same
context. If i ' σ � , then ϕ belongs to an extension of j. (iii) is
analogous to the previous one.

Again, we consider the projection problem of (2). Apply-
ing the tableau expansion rules to the negation of (3), we try
to derive a contradiction (a closed tableau).

To verify the negation of the projection problem in the ini-
tial context 0, we create a new context 1, where the contex-
tual assumptions of the �	� -predicate hold, but not the second
argument. Both nodes, the node belonging to the contextual
assumption of the �	� -predicate and the negation of its second
argument, carry a 1 as its context identifier and have 0 (the
context in which the ��� -predicate occurred) as an element of
the set of accessible contexts. The remaining steps either fol-
low the same pattern or are just regular boolean tableau ex-
pansion rules. The pairs of nodes that allow to close a branch
are connected by a dashed line. 
 1 � e 0 f�� : ϕ and 
 2 � e 1 � 0 f�� :� ϕ allow to close the second branch from the left, because
the first node is accessible from the second, as 1 '�e 1 � 0 f ,

� i & σ � : "$#%� M ϕ1 & ����� & ϕn O	& ψ �� j & σ ?�M i O � : � n
i � 1 � ϕi � j & σ ?XM i O � :ψ

FK�|�=G
� i & σ � : � "$#%� M ϕ1 & �D��� & ϕn O	& ψ �� j & σ ?XM i O � :ϕ1

FKJB�|��G
...� j & σ ?XM i O � :ϕn� j & σ ?XM i O � : � ψ�

:ϕ1 � ϕ2�
:ϕ1

F���G�
:ϕ2

�
: � � ϕ1 � ϕ2 ��
: � ϕ1 � � ϕ2

FKJ���G
�
:ϕ1 � ϕ2�

:ϕ1
�
:ϕ2

FK��G �
: � � ϕ1 � ϕ2 ��
: � ϕ1 � � ϕ2

FKJ���G
�
:ϕ1 � ϕ2�

: � ϕ1
�
:ϕ2

FKd�G �
: � � ϕ1 � ϕ2 ��

:ϕ1 � � ϕ2

FKJ�d G�
: �
� ϕ�

:ϕ
FKJ�J�G�

: � xϕ�
:ϕ ¡ x ! X ¢ F £hG �

:  xϕ�
:ϕ ¡ x ! f � X1 ����� Xn � ¢ F�¤�G

�
: ��� xϕ�
:  x � ϕ

F�J0£hG �
: �
 xϕ�
: � x � ϕ

FKJ	¤�G
where for �Y"$# � and � � "$# � : j is a fresh natural number that does not
occur elsewhere in the tableau, � �z� : X is free in ϕ, and �  �� : X1 ����� Xn

are the free variables in ϕ.

Table 2: The set of tableaux rules

which is the set of contexts that are accessible from the sec-
ond node. The first and the third branch can be closed be-
cause both nodes belong to the same context. The two right-
most branches can be closed, because 1 is accessible from 3.

An Application to Dialogue Systems
Dialogue systems such as route planning systems, e.g.,
Trindi (Cooper et al. 1999), require that the system can deal
with presuppositions. In dialogues, presuppositions play an
important role because it is convenient to take some things
for granted as they have been mentioned before or they are
part of common knowledge. For instance, in the following
dialogue, the presupposition trigger my start, assumes that it
a start-location has been mentioned before.
User: I would like to go to Paris.

System: Where do you start?

User: My start is Amsterdam

System: When do you travel? �����
In order to detect whether the user presupposes material that
has not been mentioned in the preceding discourse and which
is not part of the system’s knowledge base, it is necessary that
the system can compute those presuppositions that project. If
a presupposition projects, the system can get back to the user
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Figure 1: The tableau for the projection problem of (2)

and ask him for futher explanations. This way of detecting
missing information by using deductive methods is more ele-
gant than simply looking whether a term has occurred before.
The system behaves more intelligent and has to ask less ques-
tions about things which are obvious for the user as he has
told the system before—although in other words. In order
to improve the acceptability of dialogue system it is manda-
tory that the user can convey information in a convenient and
non-redundant way without having to repeat things.

Although the way context is represented in the Trindi sys-
tem differs from our approach, it is possible to adapt our tech-
niques to the Trindi system, cf. (Monz 1999).

Conclusions and Future Work
Computing the presuppositions of a natural language dis-
course is an important task for a natural language process-
ing system. Employing a language like � con allows for a
non-redundant way of stating presupposition problems. To
this end, we gave a translation from � pre to � con. In addi-
tion, a tableau calculus � con has been presented, which al-
lows to compute presupposition projection more efficiently
than approaches considering the projection problems inde-
pendent of each other.

In this paper, contexts were simply identified with sets of
first-order formulas. Our future work will focus on a more
complex representation of context, as it recently emerged in
computational linguistics, cf. (van der Sandt 1992). His ap-
proach seems to be more appropriate for describing some
projection phenomena that cannot be explained within a
framework that uses a simple notion of context like we did.
Nevertheless, we think that the translation function and the
tableau calculus are defined generally enough to be adaptable
to a more refined representation of context.
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